Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 26 showing 501 ~ 520 out of 1,660 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_003151

    This resource has 10+ mentions.

http://abi.inf.uni-tuebingen.de/Services/MultiLoc2

An extensive high-performance subcellular protein localization prediction system that incorporates phylogenetic profiles and Gene Ontology terms to yield higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. A downloadable version of MultiLoc2 for local use is also available.

Proper citation: MultiLoc (RRID:SCR_003151) Copy   


  • RRID:SCR_003139

    This resource has 10000+ mentions.

http://primer3.ut.ee

Tool used to design PCR primers from DNA sequence - often in high-throughput genomics applications. It does everything from mispriming libraries to sequence quality data to the generation of internal oligos.

Proper citation: Primer3 (RRID:SCR_003139) Copy   


  • RRID:SCR_003212

    This resource has 100+ mentions.

http://phenome.jax.org/

Database enables integration of genomic and phenomic data by providing access to primary experimental data, data collection protocols and analysis tools. Data represent behavioral, morphological and physiological disease-related characteristics in naive mice and those exposed to drugs, environmental agents or other treatments. Collaborative standardized collection of measured data on laboratory mouse strains to characterize them in order to facilitate translational discoveries and to assist in selection of strains for experimental studies. Includes baseline phenotype data sets as well as studies of drug, diet, disease and aging effect., protocols, projects and publications, and SNP, variation and gene expression studies. Provides tools for online analysis. Data sets are voluntarily contributed by researchers from variety of institutions and settings, or retrieved by MPD staff from open public sources. MPD has three major types of strain-centric data sets: phenotype strain surveys, SNP and variation data, and gene expression strain surveys. MPD collects data on classical inbred strains as well as any fixed-genotype strains and derivatives that are openly acquirable by the research community. New panels include Collaborative Cross (CC) lines and Diversity Outbred (DO) populations. Phenotype data include measurements of behavior, hematology, bone mineral density, cholesterol levels, endocrine function, aging processes, addiction, neurosensory functions, and other biomedically relevant areas. Genotype data are primarily in the form of single-nucleotide polymorphisms (SNPs). MPD curates data into a common framework by standardizing mouse strain nomenclature, standardizing units (SI where feasible), evaluating data (completeness, statistical power, quality), categorizing phenotype data and linking to ontologies, conforming to internal style guides for titles, tags, and descriptions, and creating comprehensive protocol documentation including environmental parameters of the test animals. These elements are critical for experimental reproducibility.

Proper citation: Mouse Phenome Database (MPD) (RRID:SCR_003212) Copy   


http://dip.doe-mbi.ucla.edu/

Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.

Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy   


  • RRID:SCR_003168

    This resource has 1+ mentions.

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/

Software package for the statistical language R, devoted to the analysis of next generation short read data of RNA-seq transcripts. It provides predictions of alternative exons in a single condition/cell sample, predictions of differential alternative exons between two conditions/cell samples, and quantification of alternative splice forms in a single condition/cell sample.

Proper citation: Solas (RRID:SCR_003168) Copy   


  • RRID:SCR_003352

    This resource has 10+ mentions.

http://pir.georgetown.edu/pirwww/dbinfo/pirsf.shtml

A SuperFamily classification system, with rules for functional site and protein name, to facilitate the sensible propagation and standardization of protein annotation and the systematic detection of annotation errors. The PIRSF concept is being used as a guiding principle to provide comprehensive and non-overlapping clustering of UniProtKB sequences into a hierarchical order to reflect their evolutionary relationships. The PIRSF classification system is based on whole proteins rather than on the component domains; therefore, it allows annotation of generic biochemical and specific biological functions, as well as classification of proteins without well-defined domains. There are different PIRSF classification levels. The primary level is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). At a lower level are the subfamilies which are clusters representing functional specialization and/or domain architecture variation within the family. Above the homeomorphic level there may be parent superfamilies that connect distantly related families and orphan proteins based on common domains. Because proteins can belong to more than one domain superfamily, the PIRSF structure is formally a network. The FTP site provides free download for PIRSF.

Proper citation: PIRSF (RRID:SCR_003352) Copy   


  • RRID:SCR_003510

    This resource has 10+ mentions.

http://www.cellimagelibrary.org/

Freely accessible, public repository of vetted and annotated microscopic images, videos, and animations of cells from a variety of organisms, showcasing cell architecture, intracellular functionalities, and both normal and abnormal processes. Explore by Cell Process, Cell Component, Cell Type or Organism. The Cell includes images acquired from historical and modern collections, publications, and by recruitment.

Proper citation: Cell Image Library (CIL) (RRID:SCR_003510) Copy   


http://www.ebi.ac.uk/pride/

Centralized, standards compliant, public data repository for proteomics data, including protein and peptide identifications, post-translational modifications and supporting spectral evidence. Originally it was developed to provide a common data exchange format and repository to support proteomics literature publications. This remit has grown with PRIDE, with the hope that PRIDE will provide a reference set of tissue-based identifications for use by the community. The future development of PRIDE has become closely linked to HUPO PSI. PRIDE encourages and welcomes direct user submissions of protein and peptide identification data to be published in peer-reviewed publications. Users may Browse public datasets, use PRIDE BioMart for custom queries, or download the data directly from the FTP site. PRIDE has been developed through a collaboration of the EMBL-EBI, Ghent University in Belgium, and the University of Manchester.

Proper citation: Proteomics Identifications (PRIDE) (RRID:SCR_003411) Copy   


  • RRID:SCR_003485

    This resource has 1000+ mentions.

http://www.reactome.org

Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.

Proper citation: Reactome (RRID:SCR_003485) Copy   


  • RRID:SCR_003487

    This resource has 10+ mentions.

http://cng.gmu.edu:8080/Lm

A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.

Proper citation: L-Measure (RRID:SCR_003487) Copy   


  • RRID:SCR_003765

    This resource has 10+ mentions.

http://www.etriks.org/

Research informatics and analytics platform for the IMI OncoTrack consortium.

Proper citation: eTRIKS (RRID:SCR_003765) Copy   


  • RRID:SCR_009212

https://CRAN.R-project.org/package=gma

Software package to perform Granger mediation analysis for time series. Includes single level GMA model and two-level GMA model, for time series with hierarchically nested structure.

Proper citation: GMA (RRID:SCR_009212) Copy   


  • RRID:SCR_008918

    This resource has 10+ mentions.

http://clipserve.clip.ubc.ca/topfind

An integrated knowledgebase focused on protein termini, their formation by proteases and functional implications. It contains information about the processing and the processing state of proteins and functional implications thereof derived from research literature, contributions by the scientific community and biological databases. It lists more than 120,000 N- and C-termini and almost 10,000 cleavages. TopFIND is a resource for comprehensive coverage of protein N- and C-termini discovered by all available in silico, in vitro as well as in vivo methodologies. It makes use of existing knowledge by seamless integration of data from UniProt and MEROPS and provides access to new data from community submission and manual literature curating. It renders modifications of protein termini, such as acetylation and citrulination, easily accessible and searchable and provides the means to identify and analyse extend and distribution of terminal modifications across a protein. The data is presented to the user with a strong emphasis on the relation to curated background information and underlying evidence that led to the observation of a terminus, its modification or proteolytic cleavage. In brief the protein information, its domain structure, protein termini, terminus modifications and proteolytic processing of and by other proteins is listed. All information is accompanied by metadata like its original source, method of identification, confidence measurement or related publication. A positional cross correlation evaluation matches termini and cleavage sites with protein features (such as amino acid variants) and domains to highlight potential effects and dependencies in a unique way. Also, a network view of all proteins showing their functional dependency as protease, substrate or protease inhibitor tied in with protein interactions is provided for the easy evaluation of network wide effects. A powerful yet user friendly filtering mechanism allows the presented data to be filtered based on parameters like methodology used, in vivo relevance, confidence or data source (e.g. limited to a single laboratory or publication). This provides means to assess physiological relevant data and to deduce functional information and hypotheses relevant to the bench scientist. TopFIND PROVIDES: * Integration of protein termini with proteolytic processing and protein features * Displays proteases and substrates within their protease web including detailed evidence information * Fully supports the Human Proteome Project through search by chromosome location CONTRIBUTE * Submit your N- or C-termini datasets * Contribute information on protein cleavages * Provide detailed experimental description, sample information and raw data

Proper citation: TopFIND (RRID:SCR_008918) Copy   


  • RRID:SCR_008870

    This resource has 100+ mentions.

http://go.princeton.edu/cgi-bin/GOTermFinder

The Generic GO Term Finder finds the significant GO terms shared among a list of genes from an organism, displaying the results in a table and as a graph (showing the terms and their ancestry). The user may optionally provide background information or a custom gene association file or filter evidence codes. This tool is capable of batch processing multiple queries at once. GO::TermFinder comprises a set of object-oriented Perl modules GO::TermFinder can be used on any system on which Perl can be run, either as a command line application, in single or batch mode, or as a web-based CGI script. This implementation, developed at the Lewis-Sigler Institute at Princeton, depends on the GO-TermFinder software written by Gavin Sherlock and Shuai Weng at Stanford University and the GO:View module written by Shuai Weng. It is made publicly available through the GMOD project. The full source code and documentation for GO:TermFinder are freely available from http://search.cpan.org/dist/GO-TermFinder/. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Generic GO Term Finder (RRID:SCR_008870) Copy   


  • RRID:SCR_008906

    This resource has 10+ mentions.

http://plantgrn.noble.org/LegumeIP/

LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.

Proper citation: LegumeIP (RRID:SCR_008906) Copy   


  • RRID:SCR_008966

    This resource has 50+ mentions.

http://hymenopteragenome.org/beebase/

Gene sequences and genomes of Bombus terrestris, Bombus impatiens, Apis mellifera and three of its pathogens, that are discoverable and analyzed via genome browsers, blast search, and apollo annotation tool. The genomes of two additional species, Apis dorsata and A. florea are currently under analysis and will soon be incorporated.BeeBase is an archive and will not be updated. The most up-to-date bee genome data is now available through the navigation bar on the HGD Home page.

Proper citation: BeeBase (RRID:SCR_008966) Copy   


  • RRID:SCR_009375

    This resource has 1+ mentions.

http://pages.stat.wisc.edu/~yandell/qtl/software/qtlbim/

Software library for QTL Bayesian Interval Mapping that provides a Bayesian model selection approach to map multiple interacting QTL. It works on experimentally inbred lines and performs a genome-wide search to locate multiple potential QTL. The package can handle continuous, binary and ordinal traits. (entry from Genetic Analysis Software)

Proper citation: R/QTLBIM (RRID:SCR_009375) Copy   


  • RRID:SCR_010228

    This resource has 5000+ mentions.

http://beast.bio.ed.ac.uk/

A cross-platform software program for Bayesian MCMC analysis of molecular sequences. It is entirely orientated towards rooted, time-measured phylogenies inferred using strict or relaxed molecular clock models. It can be used as a method of reconstructing phylogenies but is also a framework for testing evolutionary hypotheses without conditioning on a single tree topology. BEAST uses MCMC to average over tree space, so that each tree is weighted proportional to its posterior probability. We include a simple to use user-interface program for setting up standard analyses and a suit of programs for analysing the results.

Proper citation: BEAST (RRID:SCR_010228) Copy   


  • RRID:SCR_010236

    This resource has 1000+ mentions.

http://weblogo.berkeley.edu

Web application to generate sequence logos, graphical representations of patterns within multiple sequence alignment. Designed to make generation of sequence logos easy. Sequence logo generator.

Proper citation: WEBLOGO (RRID:SCR_010236) Copy   


http://www.ebi.ac.uk/ega/

Web service for permanent archiving and sharing of all types of personally identifiable genetic and phenotypic data resulting from biomedical research projects. The repository allows you to explore datasets from numerous genotype experiments, supplied by a range of data providers. The EGA''s role is to provide secure access to the data that otherwise could not be distributed to the research community. The EGA contains exclusive data collected from individuals whose consent agreements authorize data release only for specific research use or to bona fide researchers. Strict protocols govern how information is managed, stored and distributed by the EGA project. As an example, only members of the EGA team are allowed to process data in a secure computing facility. Once processed, all data are encrypted for dissemination and the encryption keys are delivered offline. The EGA also supports data access only for the consortium members prior to publication.

Proper citation: European Genome phenome Archive (RRID:SCR_004944) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X