Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://webclu.bio.wzw.tum.de/profcom/
Profiling of Complex Functionality (ProfCom) is a web-based tool for the functional interpretation of a gene list that was identified to be related by experiments. A trait which makes ProfCom a unique tool is an ability to profile enrichments of not only available Gene Ontology (GO) terms but also of complex function. A complex function is constructed as Boolean combination of available GO terms. The complex functions inferred by ProfCom are more specific in comparison to single terms and describe more accurately the functional role of genes. Platform: Online tool
Proper citation: ProfCom - Profiling of complex functionality (RRID:SCR_005797) Copy
http://estbioinfo.stat.ub.es/apli/serbgov131/index.php
SerbGO is a web-based tool intended to assist researchers determine which microarray tools for gene expression analysis which make use of the GO ontologies are best suited to their projects. SerbGO is a bidirectional application. The user can ask for some features by checking on the Query Form to get the appropriate tools for their interests. The user can also compare tools to check which features are implemented in each one. Platform: Online tool
Proper citation: SerbGO (RRID:SCR_005798) Copy
http://katahdin.mssm.edu/kismeth/revpage.pl
A web-based tool for bisulfite sequencing analysis that was designed to be used with plants, since it considers potential cytosine methylation in any sequence context (CG, CHG, and CHH). It provides a tool for the design of bisulfite primers as well as several tools for the analysis of the bisulfite sequencing results. Kismeth is not limited to data from plants, as it can be used with data from any species.
Proper citation: Kismeth (RRID:SCR_005444) Copy
Computable knowledge regarding functions of genes and gene products. GO resources include biomedical ontologies that cover molecular domains of all life forms as well as extensive compilations of gene product annotations to these ontologies that provide largely species-neutral, comprehensive statements about what gene products do. Used to standardize representation of gene and gene product attributes across species and databases.
Proper citation: Gene Ontology (RRID:SCR_002811) Copy
http://www.imexconsortium.org/
Interaction database from international collaboration between major public interaction data providers who share curation effort and develop set of curation rules when capturing data from both directly deposited interaction data or from publications in peer reviewed journals. Performs complete curation of all protein-protein interactions experimentally demonstrated within publication and makes them available in single search interface on common website. Provides data in standards compliant download formats. IMEx partners produce their own separate resources, which range from all encompassing molecular interaction databases, such as are maintained by IntAct, MINT and DIP, organism-centric resources such as BioGrid or MPIDB or biological domain centric, such as MatrixDB. They have committed to making records available, via PSICQUIC webservice, which have been curated to IMEx rules and are available to users as single, non-redundant set of curated publications which can be searched at the IMEx website. Data is made available in standards-compliant tab-deliminated and XML formats, enabling to visualize data using wide range of tools. Consortium is open to participation of additional partners and encourages deposition of data, prior to publication, and will supply unique accession numbers which may be referenced within final article. Submitters may send their data directly to any of member databases using variety of formats, but should conform to guidelines as to minimum information required to describe data.
Proper citation: IMEx - The International Molecular Exchange Consortium (RRID:SCR_002805) Copy
A database designed for plant comparative and functional genomics based on complete genomes. It comprises complete proteome sequences from the major phylum of plant evolution. The clustering of these proteomes was performed to define a consistent and extensive set of homeomorphic plant families. Based on this, lists of gene families such as plant or species specific families and several tools are provided to facilitate comparative genomics within plant genomes. The analyses follow two main steps: gene family clustering and phylogenomic analysis of the generated families. Once a group of sequences (cluster) is validated, phylogenetic analyses are performed to predict homolog relationships such as orthologs and ultraparalogs.
Proper citation: GreenPhylDB (RRID:SCR_002834) Copy
http://andestools.sourceforge.net/
Software library and a suite of applications, written in Perl and R, for deep sequencing statistical analyses.
Proper citation: ANDES (RRID:SCR_002791) Copy
http://sourceforge.net/projects/bio-rainbow/
Software developed to provide an ultra-fast and memory-efficient solution to clustering and assembling short reads produced by RAD-seq.
Proper citation: Rainbow (RRID:SCR_002724) Copy
A Support Vector Machine-based classifier to assesses the protein-coding potential of a transcript based on six biologically meaningful sequence features. CPC can discriminate coding from noncoding transcripts with high accuracy and speed. In addition to predicting the coding potential of the input transcripts, the CPC web server also graphically displays detailed sequence features and additional annotations of the transcript that may facilitate users' further investigation. The coding potential calculator tool reads FASTA data format as input.
Proper citation: Coding Potential Calculator (RRID:SCR_002764) Copy
Project to determine the gene expression profiles of normal, precancer, and cancer cells, whose generated resources are available to the cancer community. Interconnected modules provide access to all CGAP data, bioinformatic analysis tools, and biological resources allowing the user to find in silico answers to biological questions in a fraction of the time it once took in the laboratory. * Genes * Tissues * Pathways * RNAi * Chromosomes * SAGE Genie * Tools
Proper citation: Cancer Genome Anatomy Project (RRID:SCR_003072) Copy
https://rostlab.org/owiki/index.php/PredictNLS
Software automated tool for analysis and determination of Nuclear Localization Signals (NLS). Predicts that your protein is nuclear or finds out whether your potential NLS is found in our database. The program also compiles statistics on the number of nuclear/non-nuclear proteins in which your potential NLS is found. Finally, proteins with similar NLS motifs are reported, and the experimental paper describing the particular NLS are given.
Proper citation: PredictNLS (RRID:SCR_003133) Copy
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
A web interface to the Primer3 primer design program as an enhanced alternative for the CGI- scripts that come with Primer3.
Proper citation: Primer3Plus (RRID:SCR_003081) Copy
http://abi.inf.uni-tuebingen.de/Services/MultiLoc2
An extensive high-performance subcellular protein localization prediction system that incorporates phylogenetic profiles and Gene Ontology terms to yield higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. A downloadable version of MultiLoc2 for local use is also available.
Proper citation: MultiLoc (RRID:SCR_003151) Copy
Tool used to design PCR primers from DNA sequence - often in high-throughput genomics applications. It does everything from mispriming libraries to sequence quality data to the generation of internal oligos.
Proper citation: Primer3 (RRID:SCR_003139) Copy
Database enables integration of genomic and phenomic data by providing access to primary experimental data, data collection protocols and analysis tools. Data represent behavioral, morphological and physiological disease-related characteristics in naive mice and those exposed to drugs, environmental agents or other treatments. Collaborative standardized collection of measured data on laboratory mouse strains to characterize them in order to facilitate translational discoveries and to assist in selection of strains for experimental studies. Includes baseline phenotype data sets as well as studies of drug, diet, disease and aging effect., protocols, projects and publications, and SNP, variation and gene expression studies. Provides tools for online analysis. Data sets are voluntarily contributed by researchers from variety of institutions and settings, or retrieved by MPD staff from open public sources. MPD has three major types of strain-centric data sets: phenotype strain surveys, SNP and variation data, and gene expression strain surveys. MPD collects data on classical inbred strains as well as any fixed-genotype strains and derivatives that are openly acquirable by the research community. New panels include Collaborative Cross (CC) lines and Diversity Outbred (DO) populations. Phenotype data include measurements of behavior, hematology, bone mineral density, cholesterol levels, endocrine function, aging processes, addiction, neurosensory functions, and other biomedically relevant areas. Genotype data are primarily in the form of single-nucleotide polymorphisms (SNPs). MPD curates data into a common framework by standardizing mouse strain nomenclature, standardizing units (SI where feasible), evaluating data (completeness, statistical power, quality), categorizing phenotype data and linking to ontologies, conforming to internal style guides for titles, tags, and descriptions, and creating comprehensive protocol documentation including environmental parameters of the test animals. These elements are critical for experimental reproducibility.
Proper citation: Mouse Phenome Database (MPD) (RRID:SCR_003212) Copy
Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.
Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy
Software R-package for running gene set analysis using various statistical methods, from different gene level statistics and a wide range of gene-set collections. The Piano package contains functions for combining the results of multiple runs of gene set analyses.
Proper citation: Piano (RRID:SCR_003200) Copy
http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/
Software package for the statistical language R, devoted to the analysis of next generation short read data of RNA-seq transcripts. It provides predictions of alternative exons in a single condition/cell sample, predictions of differential alternative exons between two conditions/cell samples, and quantification of alternative splice forms in a single condition/cell sample.
Proper citation: Solas (RRID:SCR_003168) Copy
http://www.broadinstitute.org/cancer/software/genepattern
A powerful genomic analysis platform that provides access to hundreds of tools for gene expression analysis, proteomics, SNP analysis, flow cytometry, RNA-seq analysis, and common data processing tasks. A web-based interface provides easy access to these tools and allows the creation of multi-step analysis pipelines that enable reproducible in silico research.
Proper citation: GenePattern (RRID:SCR_003201) Copy
http://bibiserv.techfak.uni-bielefeld.de/dialign/
Tool for multiple sequence alignment using various sources of external information that is particularly useful to detect local homologies in sequences with low overall similarity. While standard alignment methods rely on comparing single residues and imposing gap penalties, DIALIGN constructs pairwise and multiple alignments by comparing entire segments of the sequences. No gap penalty is used. This approach can be used for both global and local alignment, but it is particularly successful in situations where sequences share only local homologies. Several versions of DIALIGN are available online at GOBICS, http://dialign.gobics.de/
Proper citation: DIALIGN (RRID:SCR_003041) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.