Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://mlemire.freeshell.org/SimM.README
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 6th,2023. Gene dropping simulation software. The program is a gzip'ed tar archive and is designed to run under UNIX/Linux operating system.
Proper citation: SIMM (RRID:SCR_000849) Copy
http://www.ncbi.nlm.nih.gov/SNP/
Database as central repository for both single base nucleotide substitutions and short deletion and insertion polymorphisms. Distinguishes report of how to assay SNP from use of that SNP with individuals and populations. This separation simplifies some issues of data representation. However, these initial reports describing how to assay SNP will often be accompanied by SNP experiments measuring allele occurrence in individuals and populations. Community can contribute to this resource.
Proper citation: dbSNP (RRID:SCR_002338) Copy
http://www.humgen.rwth-aachen.de/
Catalog of all changes detected in PKHD1 (Polycystic Kidney and Hepatic Disease 1) in a locus specific database. Investigators are invited to submit their novel data to this database. These data should be meaningful for clinical practice as well as of relevance for the reader interested in molecular aspects of polycystic kidney disease (PKD). There are also some links and information for ARPKD patients and their parents. Autosomal recessive polycystic kidney disease (ARPKD/PKHD1) is an important cause of renal-related and liver-related morbidity and mortality in childhood. This study reports mutation screening in 90 ARPKD patients and identifies mutations in 110 alleles making up a detection rate of 61%. Thirty-four of the detected mutations have not been reported previously. Two underlying mutations in 40 patients and one mutation in 30 cases are disclosed, and no mutation was detected on the remaining chromosomes. Mutations were found to be scattered throughout the gene without evidence of clustering at specific sites. PKHD1 mutation analysis is a powerful tool to establish the molecular cause of ARPKD in a given family. Direct identification of mutations allows an unequivocal diagnosis and accurate genetic counseling even in families displaying diagnostic challenges.
Proper citation: Autosomal Recessive Polycystic Kidney Disease Mutation Database (RRID:SCR_002290) Copy
https://www.genevestigator.com/gv/
A high performance search engine for gene expression that integrates thousands of manually curated public microarray and RNAseq experiments and nicely visualizes gene expression across different biological contexts (diseases, drugs, tissues, cancers, genotypes, etc.). There are two basic analysis approaches: # for a gene of interest, identify which conditions affect its expression. # for condition(s) of interest, identify which genes are specifically expressed in this/these conditions. Genevestigator builds on the deep integration of data, both at the level of data normalization and on the level of sample annotations. This deep integration allows scientists to ask new types of questions that cannot be addressed using conventional tools.
Proper citation: Genevestigator (RRID:SCR_002358) Copy
http://www.hgsc.bcm.tmc.edu/content/red-flour-beetle-genome-project
This portal provides information about the Tribolium castabeum Genome Project. The Tribolium castaneum genome sequence and its analysis has been published in Nature, two companion journal issues (IBMB and DGE) and numerous other publications listed below. The red flour beetle, Tribolium castaneum, a common pest that is also a genetic model for the Coleoptera. The genome has been sequenced to 7-fold coverage using a whole genome shotgun approach and assembled using the HGSC's assembly engine, Atlas, with methods employed for the Drosophila pseudoobscura genome assembly. Approximately 90% of the genome sequence has been mapped to chromosomes in collaboration with Dick Beeman (USDA ARS) and Sue Brown (Kansas State University). Access to the Data :- Genome Assembly: The long term home of the Tribolium genome is Beetlebase. Tcas 3.0 is now available in GenBank and on our FTP site. Note there are no restrictions of any kind on the Tribolium data as it has been published. Version 2 of the assembly, Tcas_2.0 is available for download using the FTP Data link in the sidebar. The assembly is described in detail in the README in that directory. T.cas_1.0 was a preliminary genome assembly that did not include large insert paired end information and has been moved to a previous assemblies folder. A genboree browser of the Tcas2.0 sequence is available here: There are also links to the genboree browser from the blast results (at the bottom of each reported HSP) if you use the blast server on this page. The original linear scaffold file, Tcas2.0/linearScaffolds/Tcas20050914-genome, posted on the ftp site did not include singleton contigs from the assembly and thus did not fully reflect the tribolium genome sequence, missing ~4.4Mb of sequence in 1860 contigs and reptigs or approximately 2.5% of the assembled sequence. A corrected Tcas20051011-genome file containing these missing sequences is now available on the ftp site. The blast databases have also been updated to reflect this change. All other data is correct, and not affected by this change. :- BLAST Searches: The BLAST link is located in the sidebar. :* Linearized chromosome and unplaced scaffold sequences :* Assembled contigs :* Bin0 unassembled reads and Repeat reads Traces are available from the NCBI Trace Archive by using the link in the sidebar, or by using NCBI MegaBLAST with a same species or cross species query. Sponsors: Funding for this project has been provided by the National Human Genome Research Institute (NHGRI U54 HG003273), which is part of the National Institutes of Health (NIH), and the U.S. Department of Agriculture's Agricultural Research Service (USDA ARS Agreement No. 58-5430-3-338).
Proper citation: Tribolium castaneum Genome Project (RRID:SCR_002848) Copy
A Java based software tool designed to simplify and expedite the process of haplotype analysis by providing a common interface to several tasks relating to such analyses. Haploview currently allows users to examine block structures, generate haplotypes in these blocks, run association tests, and save the data in a number of formats. All functionalities are highly customizable. (entry from Genetic Analysis Software) * LD & haplotype block analysis * haplotype population frequency estimation * single SNP and haplotype association tests * permutation testing for association significance * implementation of Paul de Bakker's Tagger tag SNP selection algorithm. * automatic download of phased genotype data from HapMap * visualization and plotting of PLINK whole genome association results including advanced filtering options Haploview is fully compatible with data dumps from the HapMap project and the Perlegen Genotype Browser. It can analyze thousands of SNPs (tens of thousands in command line mode) in thousands of individuals. Note: Haploview is currently on a development and support freeze. The team is currently looking at a variety of options in order to provide support for the software. Haploview is an open source project hosted by SourceForge. The source can be downloaded at the SourceForge project site.
Proper citation: Haploview (RRID:SCR_003076) Copy
http://celeganskoconsortium.omrf.org
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. The mission of the C. elegans Gene Knockout Consortium is to facilitate genetic research of this important model system through the production of deletion alleles at specified gene targets. We choose targets based on investigator requests. Strains produced by the consortium are freely available with no restrictions to any investigator. At one time, our capacity dictated that we restrict requests to five per lab. This restriction no longer holds. Investigators are encouraged especially to register requests for functionally related groups of genes. Consortium strains are distributed by the C. elegans Genetic Center (CGC). In most cases, when you use the Consortium web site to request an existing allele, your request is forwarded automatically to the CGC. However, if you indicate that an existing allele is not satisfactory for your research, (for whatever reason), you may request that we generate another allele for the same target. Any information generated by the Consortium is entered into the official C. elegans data repository, WormBase.
Proper citation: C. elegans Gene Knockout Consortium (RRID:SCR_003000) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 5, 2023. Knowledge base of genetic associations and human genome epidemiology including information on population prevalence of genetic variants, gene-disease associations, gene-gene and gene- environment interactions, and evaluation of genetic tests. This tool explores HuGENet, the Human Genome Epidemiology Network, which is a global collaboration of individuals and organizations committed to the assessment of the impact of human genome variation on population health and how genetic information can be used to improve health and prevent disease. What does HuGE Navigator offer? *HuGEpedia - an encyclopedia of human genetic variation in health and disease, includes, Phenopedia and Genopedia. Phenopedia allows you to look up gene-disease association summaries by disease, and Genopedia allows you to look up gene-disease association summaries by gene. In general, HuGEpedia is a searchable database that summarizes published articles about human disease and genetic variation, including primary studies, reviews, and meta-analyses. It provides links to Pubmed abstracts, researcher contact info, trends, and more. *HuGEtools - searching and mining the literature in human genome epidemiology, includes, HuGE Literature Finder, HuGE Investigator Browser, Gene Prospector, HuGE Watch, Variant Name Mapper, and HuGE Risk Translator. *HuGE Literature Finder finds published articles in human genome epidemiology since 2001. The search query can include genes, disease, outcome, environmental factors, author, etc. Results can be filtered by these categories. It is also possible to see all articles in the database for a particular topic, such as genotype prevalence, pharmacogenomics, or clinical trial. *HuGE Investigator Browser finds investigators in a particular field of human genome epidemiology. This info is obtained using a behind-the-scenes tool that automatically parses PubMed affiliation data. *Gene Prospector is a gateway for evaluating genes in relation to disease and risk factors. This tool allows you to enter a disease or risk factor and then supplies you with a table of genes associated w/your query that are ranked based on strength of evidence from the literature. This evidence is culled from the HuGE Literature Finder and NCBI Entrez Gene - And you're given the scoring formula. The Gene Prospector results table provides access to the Genopedia entry for each gene in the list, general info including links to other resources, SNP info, and associated literature from HuGE, PubMed, GWAS, and more. It is a great place to locate a lot of info about your disease/gene of interest very quickly. *HuGE Watch tracks the evolution of published literature, HuGE investigators, genes studied, or diseases studied in human genome epidemiology. For example, if you search Trend/Pattern for Diseases Studied you'll initially get a graph and chart of the number of diseases studied per year since 1997. You can refine these results by limiting the temporal trend to a category or study type such as Gene-gene Interaction or HuGE Review. *Variant Name Mapper maps common names and rs numbers of genetic variants using information from SNP500Cancer, SNPedia, pharmGKB, ALFRED, AlzGene, PDGene, SZgene, HuGE Navigator, LSDBs, and user submissions. *HuGE Risk Translator calculates the predictive value of genetic markers for disease risk. To do so, users must enter the frequency of risk variant, the population disease risk, and the odds ratio between the gene and disease. This information is necessary in order to yield a useful predictive result. *HuGEmix - a series of HuGE related informatics utilities and projects, includes, GAPscreener, HuGE Track, Open Source. GAPscreener is a screening tool for published literature on human genetic associations; HuGE Track is a custom track built for HuGE data in the UCSC Genome Browser; and Open Source is infrastructure for managing knowledge and information from PubMed.
Proper citation: HuGE Navigator - Human Genome Epidemiology Navigator (RRID:SCR_003172) Copy
A free, open-source, computationally efficient Java program for comparative analyses of QTL mapping data and population simulation that runs on any computer operating system. (entry from Genetic Analysis Software) It is written with a plug-in architecture for ready extensibility. The software accommodates line-cross mating designs consisting of any arbitrary sequence of selfing, backcrossing, intercrossing and haploid-doubling steps that includes map, population, and trait simulators; and is scriptable. Source code is available on request.
Proper citation: QGene (RRID:SCR_003209) Copy
Atlas containing 2- and 3-dimensional, anatomical reference slides of the lifespan of the zebrafish to support research and education worldwide. Hematoxylin and eosin histological slides, at various points in the lifespan of the zebrafish, have been scanned at 40x resolution and are available through a virtual slide viewer. 3D models of the organs are reconstructed from plastic tissue sections of embryo and larvae. The size of the zebrafish, which allows sections to fall conveniently within the dimensions of the common 1 x 3 glass slide, makes it possible for this anatomical atlas to become as high resolution as for any vertebrate. That resolution, together with the integration of histology and organ anatomy, will create unique opportunities for comparisons with both smaller and larger model systems that each have their own strengths in research and educational value. The atlas team is working to allow the site to function as a scaffold for collaborative research and educational activity across disciplines and model organisms. The Zebrafish Atlas was created to answer a community call for a comprehensive, web-based, anatomical and pathological atlas of the zebrafish, which has become one of the most widely used vertebrate animal models globally. The experimental strengths of zebrafish as a model system have made it useful for a wide range of investigations addressing the missions of the NIH and NSF. The Zebrafish Atlas provides reference slides for virtual microscopic viewing of the zebrafish using an Internet browser. Virtual slide technology allows the user to choose their own field of view and magnification, and to consult labeled histological sections of zebrafish. We are planning to include a complete set of embryos, larvae, juveniles, and adults from approximately 25 different ages. Future work will also include a variety of comparisons (e.g. normal vs. mutant, normal vs. diseased, multiple stages of development, zebrafish with other organisms, and different types of cancer)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Zebrafish Atlas (RRID:SCR_006722) Copy
https://cran.r-project.org/web/packages/LDheatmap/index.html
Software application that plots measures of pairwise linkage disequilibria for SNPs (entry from Genetic Analysis Software)
Proper citation: LDHEATMAP (RRID:SCR_006312) Copy
http://wpicr.wpic.pitt.edu/WPICCompGen/hclust/hclust.htm
Software application that is a simple clustering method that can be used to rapidly identify a set of tag SNP's based upon genotype data (entry from Genetic Analysis Software), THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: HCLUST (RRID:SCR_009154) Copy
http://www.cdc.gov/genomics/hugenet/default.htm
Human Genome Epidemiology Network, or HuGENet, is a global collaboration of individuals and organizations committed to the assessment of the impact of human genome variation on population health and how genetic information can be used to improve health and prevent disease. Its goals include: establishing an information exchange that promotes global collaboration in developing peer-reviewed information on the relationship between human genomic variation and health and on the quality of genetic tests for screening and prevention; providing training and technical assistance to researchers and practitioners interested in assessing the role of human genomic variation on population health and how such information can be used in practice; developing an updated and accessible knowledge base on the World Wide Web; and promoting the use of this knowledge base by health care providers, researchers, industry, government, and the public for making decisions involving the use of genetic information for disease prevention and health promotion. HuGENet collaborators come from multiple disciplines such as epidemiology, genetics, clinical medicine, policy, public health, education, and biomedical sciences. Currently, there are 4 HuGENet Coordinating Centers for the implementation of HuGENet activities: CDC''s Office of Public Health Genomics, Atlanta, Georgia; HuGENet UK Coordinating Center, Cambridge, UK; University of Ioannina, Greece; University of Ottawa , Ottawa, Canada. HuGENet includes: HuGE e-Journal Club: The HuGE e-Journal Club is an electronic discussion forum where new human genome epidemiologic (HuGE) findings, published in the scientific literature in the CDC''s Office of Public Health Genomics Weekly Update, will be abstracted, summarized, presented, and discussed via a newly created HuGENet listserv. HuGE Reviews: A HuGE Review identifies human genetic variations at one or more loci, and describes what is known about the frequency of these variants in different populations, identifies diseases that these variants are associated with and summarizes the magnitude of risks and associated risk factors, and evaluates associated genetic tests. Reviews point to gaps in existing epidemiologic and clinical knowledge, thus stimulating further research in these areas. HuGE Fact Sheets: HuGE Fact Sheets summarize information about a particular gene, its variants, and associated diseases. HuGE Case Studies: An on-line presentation designed to sharpen your epidemiological skills and enhance your knowledge on genomic variation and human diseases. Its purpose is to train health professionals in the practical application of human genome epidemiology (HuGE), which translates gene discoveries to disease prevention by integrating population-based data on gene-disease relationships and interventions. Students will acquire conceptual and practical tools for critically evaluating the growing scientific literature in specific disease areas. HUGENet Publications: Articles related to the HuGENet movement written by our HuGENet collaborators. HuGE Navigator: An integrated, searchable knowledge base of genetic associations and human genome epidemiology, including information on population prevalence of genetic variants, gene-disease associations, gene-gene and gene- environment interactions, and evaluation of genetic tests. HuGE Workshops: HuGENet has sponsored meetings and workshops with national and international partners since 2001. Available are detailed summaries, agendas or the ability to download speaker slides. HuGE Book: Human Genome Epidemiology: A Scientific Foundation for Using Genetic Information to Improve Health and Prevent Disease. (The findings and conclusions in this book are those of the author(s) and do not necessarily represent the views of the funding agency.) HuGENet Collaborators: HuGENet is interested in establishing collaborations with individuals and organizations working on population based research involving genetic information. HuGE Funding: Funding opportunities for specific population-based genetic epidemiology research projects are available. Research initiatives whose aims include assessing the prevalence of human genetic variation, the association between genetic variants and human diseases, the measurement of gene-gene or gene-environment interaction, and the evaluation of genetic tests for screening and prevention are compiled to create a posted listing. Additional information and application details can be found by clicking on the respective links.
Proper citation: Human Genome Epidemiology Network (RRID:SCR_013117) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A database of candidate genes for mapped inherited human diseases. Candidate priorities are automatically established by a data mining algorithm that extracts putative genes in the chromosomal region where the disease is mapped, and evaluates their possible relation to the disease based on the phenotype of the disorder. Data analysis uses a scoring system developed for the possible functional relations of human genes to genetically inherited diseases that have been mapped onto chromosomal regions without assignment of a particular gene. Methodology can be divided in two parts: the association of genes to phenotypic features, and the identification of candidate genes on a chromosonal region by homology. This is an analysis of relations between phenotypic features and chemical objects, and from chemical objects to protein function terms, based on the whole MEDLINE and RefSeq databases.
Proper citation: Candidate Genes to Inherited Diseases (RRID:SCR_008190) Copy
http://www.anim.med.kyoto-u.ac.jp/nbr/default.aspx
NBRP-Rat was established to overcome limitations associated with properly utilizing existing rat resources. The collection of existing strains and genetic sub strains, phenotypic and genotypic characterization, cryopreservation of embryos, distribution of the collected rat strains, and a publicly accessible database of all assembled data are the major goals of this project. Once achieved, this unique database including the unique rat strains will become a powerful tool for biomedical research. A catalog of comparable, standardized and well characterized rat strains will lead to new and more precise research topics as well as it will facilitate biomedical sciences, drug discovery, advanced chemical research, and contributes to life sciences worldwide. As mentioned before, the major goals of NBRP-Rat are the collection, preservation and supply of rat strains. The repository includes strains from Japan and abroad, spontaneous mutants, congenic and recombinant strains as well as transgenic and mutagenized rats. Deposited rat strains are not only conserved as cryopreserved embryos and sperm. Many reference and frequently used rat strains are also maintained as living animals under SPF conditions. Furthermore, NBRP-rat provides a unique database on various rat strain phenotypes accompanied with basic genetic information. This allows scientists the selection of standardized and research specific strains. The animals themselves are provided free of charge to the research community (except for shipping costs). Sponsors: This project is one part of the National BioResource Projects (NBRP) in Japan for more than 20 species including animals, plants, microbes, tissues and DNAs. It is founded by the Japanese Ministry of Education, Culture, Sports, Science and Technology (Monkasho) and started in 2002.
Proper citation: National Bio Resource Project for the Rat. (RRID:SCR_012774) Copy
http://www.seattle.eric.research.va.gov/VETR/Home.asp
The Vietnam Era Twin (VET) Registry is a closed cohort composed of approximately 7,000 middle-aged male-male twin pairs both of whom served in the military during the time of the Vietnam conflict (1964-1975). The Registry is a United States Department of Veterans Affairs (VA) resource that was originally constructed from military records; the Registry has been in existence for almost 20 years. It is one of the largest national twin registries in the US and currently has members living in all 50 states. Initially formed to address questions about the long-term health effects of service in Vietnam, the Registry has evolved into a resource for genetic epidemiological studies of mental and physical health conditions. Several waves of mail and telephone surveys have collected a wealth of health-related information on Registry twins, referred to as members. In addition to twins, selected adult offspring of twins and the mothers of those offspring are also VET Registry members. More recent data collection efforts have focused on specific sets of twin pairs and have conducted detailed clinical or laboratory testing. Selected Vietnam Era Registry Research Studies: * Veteran Health Study * VETSA 2: A Longitudinal Study of Cognitive Aging * Alcoholism Course thought Midlife: A Twin Family Study and Offspring of Twins: G, E and GxE Risk for Alcoholism * GE: Offspring of Twins with Substance Use Disorder * Mechanisms Linking Depression to Cardiovascular Risk (Twins Heart Study 2) * Post-traumatic Stress Disorder and Cardiovascular Disease * Biological Markers for Post-traumatic Stress Disorder (T3) * Memory and the Hippocampus in Vietnam-era Twins with PTSD (Time 3)
Proper citation: Vietnam Era Twin Registry (RRID:SCR_008807) Copy
http://www.type2diabetesgenetics.org/
Portal and database of DNA sequence, functional and epigenomic information, and clinical data from studies on type 2 diabetes and analytic tools to analyze these data. .Provides data and tools to promote understanding and treatment of type 2 diabetes and its complications. Used for identifying genetic biomarkers correlated to Type 2 diabetes and development of novel drugs for this disease.
Proper citation: Accelerating Medicines Partnership Type 2 Diabetes Knowledge Portal (AMP-T2D) (RRID:SCR_003743) Copy
Software package for advanced Bayesian evolutionary analysis by sampling trees. Used for phylogenetics, population genetics and phylodynamics. Program for Bayesian phylogenetic analysis of molecular sequences. Estimates rooted, time measured phylogenies using strict or relaxed molecular clock models. Framework can be extended by third parties. Comprised of standalone programs including BEAUti, BEAST, MASTER, RBS, SNAPP, MultiTypeTree, BDSKY, LogAnalyser, LogCombiner, TreeAnnotator, DensiTree and package manager.
Proper citation: BEAST2 (RRID:SCR_017307) Copy
Portal for identifying genetic and pharmacologic dependencies and biomarkers that predicts them by providing access to datasets, visualizations, and analysis tools that are being used by Cancer Dependency Map Project at Broad Institute. Project to systematically identify genes and small molecule dependencies and to determine markers that predict sensitivity. All data generated by DepMap Project are available to public under CC BY 4.0 license on quarterly basis and pre-publication.
Proper citation: Cancer Dependency Map Portal (RRID:SCR_017655) Copy
https://deepblue.mpi-inf.mpg.de/
Central data access hub for large collections of epigenomic data. It organizes data from different sources using controlled vocabularies and ontologies. Data Server for storing, organizing, searching, and retrieving genomic and epigenomic data, handling associated metadata, and to perform different types of analysis.
Proper citation: Deep Blue Epigenomic Data Server (RRID:SCR_017490) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.