Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 22 showing 421 ~ 440 out of 686 results
Snippet view Table view Download 686 Result(s)
Click the to add this resource to a Collection

http://brainatlas.mbi.ufl.edu/Database/

Comprehensive three-dimensional digital atlas database of the C57BL/6J mouse brain based on magnetic resonance microscopy images acquired on a 17.6-T superconducting magnet. This database consists of: Individual MRI images of mouse brains; three types of atlases: individual atlases, minimum deformation atlases and probabilistic atlases; the associated quantitative structural information, such as structural volumes and surface areas. Quantitative group information, such as variations in structural volume, surface area, magnetic resonance microscopy image intensity and local geometry, have been computed and stored as an integral part of the database. The database augments ongoing efforts with other high priority strains as defined by the Mouse Phenome Database focused on providing a quantitative framework for accurate mapping of functional, genetic and protein expression patterns acquired by a myriad of technologies and imaging modalities. You must register First (Mandatory) and then you may Download Images and Data.

Proper citation: MRM NeAt (Neurological Atlas) Mouse Brain Database (RRID:SCR_007053) Copy   


http://humanconnectome.org/consortia/

Project to map the neural pathways that underlie human brain function for several modalities of neuroimaging data including fMRI. The purpose of the Project is to acquire and share data about the structural and functional connectivity of the human brain. It will greatly advance the capabilities for imaging and analyzing brain connections, resulting in improved sensitivity, resolution, and utility, thereby accelerating progress in the emerging field of human connectomics. Altogether, the Human Connectome Project will lead to major advances in the understanding of what makes us uniquely human and will set the stage for future studies of abnormal brain circuits in many neurological and psychiatric disorders. The sixteen institutes and centers of the NIH Blueprint for Neuroscience have funded two major grants that will take complementary approaches to deciphering the brain's amazingly complex wiring diagram. An 11-institution consortium led by Washington University in St. Louis and the University of Minnesota received a 5-year grant to enable development and utilization of advanced Magnetic Resonance Imaging (MRI) methods to chart brain circuitry. A consortium led by Massachusetts General Hospital and the University of California at Los Angeles received a grant to enable building and refining a next-generation 3T MR scanner that improves the quality and spatial resolution with which brain connectivity data can be acquired at this field strength.

Proper citation: NIH Human Connectome Project (RRID:SCR_006942) Copy   


http://www.stanleyresearch.org/dnn/BrainResearchLaboratory/tabid/195/Default.aspx

It is a widely used resource for researchers trying to find the causes of, and better treatments for, schizophrenia, bipolar disorder and major depression. Brains were collected 1994 to 2005 with the permission of the families in a standardized manner, with half of each specimen being frozen and half fixed in formalin. Currently four cohorts are available for study; the Neuropathology Consortium consisting of 60 cases (15 each schizophrenia, bipolar disorder, depression, and controls), the Array Collection consisting of 105 cases (35 each schizophrenia, bipolar disorder, and controls), the Depression Collection consisting of 36 cases (12 each depression with psychosis, depression without psychosis, and controls), and the Parietal Collection of 48 cases (fixed inferior parietal sections from 24 each schizophrenia and controls). Since 1996, the Stanley Brain Collection has sent over 200,000 sections and 10,000 blocks of brain tissue to 240 research laboratories in 23 states and 20 foreign countries. All tissue has been provided to the researchers without charge. All costs for collecting, processing, and storing the brain tissue have been borne by The Stanley Medical Research Institute as a public service. All reasonable requests for brain tissue (over 90 percent of applications) have been honored. Researchers selected to receive tissue must sign an agreement that sets forth conditions for its use. Results received from researchers become part of the Stanley brain collection data set and will be used for integrative, multivariate analyses. In addition to overseeing the brain collection, the laboratory conducts research on the neuropathology of schizophrenia and bipolar disorder and on brain development. Many studies carried out at the Stanley Brain Research Laboratory are done in cooperation with studies at the Stanley Laboratory of Developmental Neurovirology.

Proper citation: Stanley Brain Collection (RRID:SCR_007062) Copy   


http://www9.biostr.washington.edu/da.html

Atlases of human brain, thoracic viscera and knee designed for teaching gross anatomy. Also provides a neuroanatomy Interactive syllabus, suitable as a laboratory guide, with an instructive caption accompanying each image and interactive quizzes. The Digital Anatomist Project is motivated by the belief that anatomy is the basis of all the biomedical sciences (including clinical medicine). Manifestations of health and disease can be regarded as attributes of anatomical structures ranging in size from molecules to body parts. Therefore DAP''s goal is to represent anatomy in a comprehensive and consistent way, which should meet the needs of all biomedical applications that require anatomical knowledge. DAP has pursued two parallel tracks for representing anatomical information: 1. The generation of graphical models derived from cadaver and clinical imaging data; and 2. Symbolic modeling of the structures and relationships that constitute the human body. It''s initial work with graphical representations of anatomy provided the impetus and motivation for the National Library of Medicine to establish the Visible Human Project, and it''s symbolic modeling has enhanced NLM''s Unified Medical Language System in order to represent deep anatomical knowledge. In collaboration with the knowledge systems group at Stanford, it has now created a very large knowledge base which provides the foundation for the machine-based intelligence needed to remotely interact with biomedical image data.

Proper citation: Digital Anatomist Interactive Atlases Project (RRID:SCR_007060) Copy   


  • RRID:SCR_007011

    This resource has 1+ mentions.

http://www.wholebraincatalog.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 26, 2016. An open source, downloadable, 3d atlas of the mouse brain and its cellular constituents that allows multi-scale data to be visualized in a seamless way, similar to Google earth. Data within the Catalog is marked up with annotations and can link out to additional data sources via a semantic framework. This next generation open environment has been developed to connect members of the neuroscience community to facilitate solutions for today's intractable challenges in brain research through cooperation and crowd sourcing. The client-server platform provides rich 3-D views for researchers to zoom in, out, and around structures deep in a multi-scale spatial framework of the mouse brain. An open-source, 3-D graphics engine used in graphics-intensive computer gaming generates high-resolution visualizations that bring data to life through biological simulations and animations. Within the Catalog, researchers can view and contribute a wide range of data including: * 3D meshes of subcellular scenes or brain region territories * Large 2D image datasets from both electron and light level microscopy * NeuroML and Neurolucida neuronal reconstructions * Protein Database molecular structures Users of the Whole Brain Catalog can: * Fit data of any scale into the international standard atlas coordinate system for spatial brain mapping, the Waxholm Space. * View brain slices, neurons and their animation, neuropil reconstructions, and molecules in appropriate locations * View data up close and at a high resolution * View their own data in the Whole Brain Catalog environment * View data within a semantic environment supported by vocabularies from the Neuroscience Information Framework (NIF) at http://www.neuinfo.org. * Contribute code and connect personal tools to the environment * Make new connections with related research and researchers 5 Easy Ways to Explore: * Explore the datasets across multiple scales. * View data closely at high resolution. * Observe accurately simulated neurons. * Readily search for content. * Contribute your own research.

Proper citation: Whole Brain Catalog (RRID:SCR_007011) Copy   


http://www.neuropat.dote.hu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 07, 2013. A set of human neuroanatomical resources developed at the University of Hungary. Resources include an on-line brain atlas, a neuropathology atlas, functional neuroanatomy for neurologists and an extensive series of links to other neuroanatomy and neurological resources on the web. The original resources developed by this site include a set of neuropathological slides covering many neurological conditions, e.g., Alzheimer's disease, an atlas of normal human neuroanatomy based on unstained brain slices, along with histological images of brainstem and spinal cord. On-line quizzes are also provided. This is an excellent educational site and gateway to neurological resources on the web.

Proper citation: Neuroanatomy and Neuropathology on the Internet (RRID:SCR_007272) Copy   


  • RRID:SCR_007302

    This resource has 1+ mentions.

http://www.hbpp.org/

An open international project under the patronage of the Human Proteome Organisation (HUPO) that aims: To analyze the brain proteome of human as well as mouse models in healthy, neurodiseased and aged status with focus on Alzheimer's and Parkinson's Disease; To perform quantitative proteomics as well as complementary gene expression profiling on disease-related brain areas and bodily fluids; To advance knowledge of neurodiseases and aging in order to push new diagnostic approaches and medications; To exchange knowledge and data with other HUPO projects and national / international initiatives in the neuroproteomic field; To make neuroproteomic research and its results available in the scientific community and society. Recent work has shown that standards in proteomics and especially in bioinformatics are mandatory to allow comparable analyses, but still missing. To address this challenge, the HUPO BPP is closely working together with the HUPO Proteome Standards Initiative (HUPO PSI).

Proper citation: HUPO Brain Proteome Project (RRID:SCR_007302) Copy   


http://www.nntc.org/

Collects, stores, and distributes samples of nervous tissue, cerebrospinal fluid, blood, and other tissue from HIV-infected individuals. The NNTC mission is to bolster research on the effects of HIV infection on human brain by providing high-quality, well-characterized tissue samples from patients who died with HIV, and for whom comprehensive neuromedical and neuropsychiatric data were gathered antemortem. Researchers can request tissues from patients who have been characterized by: * degree of neurobehavioral impairment * neurological and other clinical diagnoses * history of drug use * antiretroviral treatments * blood and CSF viral load * neuropathological diagnosis The NNTC encourages external researchers to submit tissue requests for ancillary studies. The Specimen Query Tool is a web-based utility that allows researchers to quickly sort and identify appropriate NNTC specimens to support their research projects. The results generated by the tool reflect the inventory at a previous time. Actual availability at the local repositories may vary as specimens are added or distributed to other investigators.

Proper citation: National NeuroAIDS Tissue Consortium (RRID:SCR_007323) Copy   


  • RRID:SCR_007378

    This resource has 1000+ mentions.

http://fmri.wfubmc.edu/software/PickAtlas

A software toolbox that provides a method for generating Region of Interest (ROI) masks based on the Talairach Daemon database. The atlases include Brodmann area, Lobar, Hemisphere, Anatomic Label (gyral anatomy), and Tissue type. The atlases have been extended to the vertex in MNI space, and corrected for the precentral gyrus anomaly. Additional atlases (including non-human atlases) can be added without difficulty., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: WFU PickAtlas (RRID:SCR_007378) Copy   


http://mousediversity.alleninstitute.org/

A database, and associated atlas, that characterizes gene expression across genetic backgrounds and sex, expanding beyond the adult male C57BL/6J reference brain comprising the Allen Mouse Brain Atlas to include seven strains of male mice and female C57BL/6J mice. Gene expression was detected using colorimetric RNA in situ hybridization (ISH) that provides cellular level anatomic resolution. ISH data are searchable and organized by gene, strain, or sex.

Proper citation: Allen Institute Mouse Diversity Study (RRID:SCR_008009) Copy   


http://archive.cnbc.cmu.edu/Resources/disordermodels/index.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. This site aims to provide a discussion and source list for connectionist and neural network models of disorders associated with mental or brain conditions. Recent connectionist and neural network models of behavior, information processing patterns, and brain activity present in people with cognitive, affective, brain, and behavioral disorders are reviewed on this web site. Ways that assumptions regarding normal and disordered behavior may be represented in connectionist models are discussed for features of various disorders. Similarities and differences between the models and criteria for their evaluation are presented, and suggestions for inclusion of information which may help to make these models more directly comparable in the future are considered. References to Connectionist Models of Cognitive, Affective, Brain, and Behavioral Disorders include: General Neural Network Information Reviews, General Introductions, and Calls for More Connectionist Models of Mental Disorders Models of Psychopathologies and Psychiatric Disorders Models of Cognitive, Affective, Brain, and Behavioral Disorders Not Associated with Psychopathology Additionally, Web Sites for Neural Network Modelers of Disorder are provided.

Proper citation: Connectionist Models of Cognitive, Affective, Brain, and Behavioral Disorders (RRID:SCR_008088) Copy   


http://aidb.crbs.ucsd.edu

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented October 4, 2017.

A sub-project of the Cell Centered Database (http://ccdb.ucsd.edu) providing a public repository for animal imaging data sets from MRI and related techniques. The public AIDB website provides the ability for browsing, visualizing and downloading the animal subjected MRI data. The AIDB is a pilot project to serve the current need for public imaging repositories for animal imaging data. The Cell Centered Database (CCDB) is a web accessible database for high resolution 2D, 3D and 4D data from light and electron microscopy. The AIDB data model is modified from the basic model of the CCDB where microscopic images are combined to make 2D, 3D and 4D reconstructions. The CCDB has made available over 40 segmented datasets from high resolution magnetic resonance imaging of inbred mouse strains through the prototype AIDB. These data were acquired as part of the Mouse BIRN project by Drs. G. Allan Johnson and Robert Williams. More information about these data can be found in Badea et al. (2009) (Genetic dissection of the mouse CNS using magnetic resonance microscopy - Pubmed: 19542887)

Proper citation: Animal Imaging Database (RRID:SCR_008002) Copy   


http://brainspan.org/

Atlas of developing human brain for studying transcriptional mechanisms involved in human brain development. Consists of RNA sequencing and exon microarray data profiling up to sixteen cortical and subcortical structures across full course of human brain development, high resolution neuroanatomical transcriptional profiles of about 300 distinct structures spanning entire brain for four midgestional prenatal specimens, in situ hybridization image data covering selected genes and brain regions in developing and adult human brain, reference atlas in full color with high resolution anatomic reference atlases of prenatal (two stages) and adult human brain along with supporting histology, magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI) data.

Proper citation: Allen Human Brain Atlas: BrainSpan (Atlas of the Developing Brain) (RRID:SCR_008083) Copy   


http://www.dana.org/resources/brainweb/

BrainWeb provides information and links to validated sites about brain diseases and disorders. These include outside resources reviewed by scientific advisers, as well as articles in Dana publications. Sites listed in BrainWeb detail common brain diseases and disorders, and include general neuroscience and health resources. They offer descriptions of conditions, frequently asked questions, organization contacts, and sources for more information. BrainWeb and its links are suitable for lay readers, including students and educators, as well as people with brain disorders, their families, and caregivers.

Proper citation: Dana Foundation: BrainWeb (RRID:SCR_007996) Copy   


http://neuroinformatics.usc.edu/

The USC Brain Project is engaged in the effort to develop new tools and methodologies for neuroinformatics in modeling neural mechanisms of visuomotor coordination and exploring the evolution of the human language-ready brain, as well as conducting work in both neural modeling and database construction in relation to rehabilitation after stroke. Sponsors: USCBP is funded by the University of Southern California.

Proper citation: University of Southern California Brain Project (RRID:SCR_008044) Copy   


http://www.scripps.edu/np/inia/index.html

Consortium set out to identify the molecular, cellular, and behavioral neuroadaptations that occur in the brain reward circuits associated with the extended amygdala and its connections. It is hypothesized that genetic differences and/or neuroadaptations in this circuitry are responsible for the individual differences in vulnerability to the excessive consumption of alcohol. Chronic exposure to alcohol results in neuroadaptive phenomena, including tolerance, sensitization, dependence, withdrawal, loss of control of drinking, and relapse that contribute to the development of excessive alcohol consumption. The INIA has the following goals: 1) To establish animal models to study specific neurobiological targets for vulnerability that lead to excessive consumption of alcohol at the molecular, cellular and neural circuit level of analysis, 2) To identify specific clusters of genes whose expression is regulated by alcohol and which are responsible for any given model of excessive alcohol consumption using gene expression arrays, differential display, mutagenesis directed at specific brain areas, and the development of new informatics tools to analyze and interpret gene expression, cellular circuitry and brain circuitry data with the use of transgenic and knockout approaches, and 3) To attract new and innovative investigators to the field of alcohol research by recruiting individuals for development of U01 grants and pilot projects and by developing online interactive capacity among INIA scientists and others, and by making the neuroinformatics integrated data sets accessible, searchable and interactive with other databases for all scientists interested in alcoholism research. The structure of INIA is envisioned as two domains, Dependence-induced drinking and Binge drinking, comprised of multiple U01 research grants. The flow of information within each domain moves from molecular, to cellular, to neurocircuitry levels of analysis. These U01s share information with the core facilities, which act as data depositories. The Administrative Core coordinates the flow of information among the Domains and Cores and disseminates the information back to the U01s. A Pilot Project program will identify exciting new areas for research and the continual recruitment of new investigators to the alcohol field. The INIA program is directed by an Administrative Core in close cooperation with the Animal Models, Gene Array and Neurocircuitry Cores via a Steering Committee and with the continual advice of the Scientific Advisory Committee.

Proper citation: Integrative Neuroscience Initiative on Alcoholism (RRID:SCR_008042) Copy   


  • RRID:SCR_008315

http://brainconnection.positscience.com/

An educational site providing accessible information about how the brain works and how people learn

Proper citation: Brain Connection (RRID:SCR_008315) Copy   


http://loni.usc.edu/Software/SVT

Software tool for determining the statistically significant regions of activation in single or multi-subject human brain functional studies. It can be also applied to structural brain data for analyzing developmental, dementia and other changes of anatomy over time. This package was originally developed to work on Sun SPARC and SGI stations using the "C" language compiler provided by Sun/SGI as part of the standard system software.

Proper citation: Sub-Volume Thresholding Analysis (RRID:SCR_008272) Copy   


http://www.neuroanatomy.wisc.edu/

Training materials including Web edition modules of the neuroanatomy coursebooks used by first-year medical students at the University of Wisconsin Medical School (UWMS), videos, and images. Topics include spinal cord, brain stem, Cerebellum, Thalamus, Cranial Nerves and National Board Review practice questions.

Proper citation: UW-Madison Neuroscience Resources (RRID:SCR_001649) Copy   


http://www.ibro.info/

A central organization that develops, supports, co-ordinates and promotes scientific research in all fields concerning the brain; promotes international collaboration and interchange of scientific information on brain research throughout the world; and provides for and to assist in education and the dissemination of information relating to brain research by all available means. IBRO represents the interests of more than 50,000 neuroscientists around the globe. Over the years, IBRO has set up a number of program to stimulate international contacts in brain research. Symposia and workshops are sponsored on the basis of competitive applications. Under its Publications Programme, IBRO publishes the journal Neuroscience and the annual newsletter IBRO News. IBRO offers post-doctoral fellowships and travel grants to students from less-developed countries. It has run a Neuroscience Schools Programme, organized by the committees of IBROs six Regions, aimed at forming interactive networks among students and teachers during training courses in Africa, Asia, Central and Eastern Europe, Latin America, Western Europe, and the US and Canada. With just three schools in 1999, expansion has been rapid - in 2007 there were 22 schools around the world.

Proper citation: International Brain Research Organization (RRID:SCR_007406) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X