Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.brainnet-europe.org/index.php?option=com_content&view=article&id=99&Itemid=99
Sampling protocols produced by the BrainNet Europe Consortium generally with five types of dissection and brain processing procedures defined in all disease related protocols. * Fresh brain dissection * Fresh brain processing * Dissection of formalin-fixed brain * Histology and immunohistochemistry * Processing fresh brain
Proper citation: BrainNet Europe Sampling Protocols (RRID:SCR_000484) Copy
http://www.thebrainproject.org/
The Mission of the Sarah Jane Brain Project is to create a model system of care for children and young adults suffering from all Pediatric Acquired Brain Injuries in order to advance our knowledge of the brain fifty years over the next five years! As a father of a child suffering from a Pediatric Acquired Brain Injury (PABI), I have spent countless hours searching the internet and speaking with Sarah Jane's development team (doctors, therapists and other professionals) trying to improve the development of my daughter. What I found was that while there are a countless number of wonderful and informative prevention sites for Shaken Baby Syndrome and advocacy sites for brain injuries, there is no one centralized resource for research and rehabilitation for PABI. Furthermore, many of the issues families and children face are the same whether the brain injury was caused by a car crash, a sports-related concussion, an assault or by a tumor. No one person or organization has all the answers to the questions that parents of children suffering from PABI face. Yet through my own experience, I learned that the coordination and dissemination of Sarah Jane's medical and therapy records and data in an orderly manner greatly helps her development team better help her. These wonderful individuals are constantly looking for additional ways to improve Sarah Jane's progress by speaking with their colleagues, reading literature on brain injury, and collaborating with other parents. But they all admit there is a considerable amount that still needs to be learned about the human brain, particularly the developing brain. The field of neuroscience today is similar to the computer science field of the 1950s and 1960s: you have a diverse group of very smart people working independently of one another throughout the United States and the world, yet few know what the others are doing behind closed doors. Fast- forward 50 years and many of the breakthroughs in the computer industry have been made utilizing the principles of open source a research method that promotes free and open access to the design and production of goods and knowledge. Its use was made well-known through the creation of the Linux computer operating system, in which professionals share knowledge to make corrections and fix problems. Open source is commonly used by millions of people today through the Wikipedia online free encyclopedia, a collection of public entries on established subjects that allows anyone to make additions or corrections. The National Institute of Mental Health launched The Human Brain Project in 1993 to develop and support the new science of neuro-informatics. From this initiative, it became obvious what needed to be done. That's why we created the Sarah Jane Brain Virtual Center of Excellence an ecosystem for professionals and families dealing with PABI around the world and a vehicle to help implement the PABI Plan by establishing a model system for PABI.
Proper citation: Sarah Jane Brain Project (RRID:SCR_000620) Copy
http://www.loni.usc.edu/Software/LOVE
A versatile 1D, 2D and 3D data viewer geared for cross-platform visualization of stereotactic brain data. It is a 3-D viewer that allows volumetric data display and manipulation of axial, sagittal and coronal views. It reads Analyze, Raw-binary and NetCDF volumetric data, as well as, Multi-Contour Files (MCF), LWO/LWS surfaces, atlas hierarchical brain-region labelings ( Brain Trees). It is a portable Java-based software, which only requires a Java interpreter and a 64 MB of RAM memory to run on any computer architecture. LONI_Viz allows the user to interactively overlay and browse through several data volumes, zoom in and out in the axial, sagittal and coronal views, and reports the intensities and the stereo-tactic voxel and world coordinates of the data. Expert users can use LONI_Viz to delineate structures of interest, e.g., sulcal curves, on the 3 cardinal projections of the data. These curves then may be use to reconstruct surfaces representing the topological boundaries of cortical and sub-cortical regions of interest. The 3D features of the package include a SurfaceViewer and a full real-time VolumeRenderer. These allow the user to view the relative positions of different anatomical or functional regions which are not co-planar in any of the axial, sagittal or coronal 2D projection planes. The interactive part of LONI_Viz features a region drawing module used for manual delineation of regions of interest. A series of 2D contours describing the boundary of a region in projection planes (axial, sagittal or coronal) could be used to reconstruct the surface-representation of the 3D outer shell of the region. The latter could then be resliced in directions complementary to the drawing-direction and these complementary contours could be loaded in all tree cardinal views. In addition the surface object could be displayed using the SurfaceViewer. A pre-loading data crop and sub-sampling module allows the user to load and view practically data of any size. This is especially important when viewing cryotome, histological or stained data-sets which may reach 1GB (109 bytes) in size. The user could overlay several pre-registered volumes, change intensity colors and ranges and the inter-volume opacities to visually inspect similarities and differences between the different subjects/modalities. Several image-processing aids provide histogram plotting, image-smoothing, etc. Specific Features: * Region description DataBase * Moleculo-genetic database * Brain anatomical data viewer * BrainMapper tool * Surface (LightWave objects/scenes) and Volume rendering tools * Interactive Contour Drawing tool Implementation Issues: * Applet vs. Application - the software is available as both an applet and a standalone application. The former could be used to browse data from within the LONI database, however, it imposes restrictions on file-size, Internet connection and network-bandwidth and client/server file access. The later requires a local install and configuration of the LONI_Viz software * Extendable object-oriented code (Java), computer architecture independent * Complete online software documentation is available at http://www.loni.ucla.edu/LONI_Viz and a Java-Class documentation is available at http://www.loni.ucla.edu/~dinov/LONI_Vis.dir/doc/LONI_Viz_Java_Docs.html
Proper citation: LONI Visualization Tool (RRID:SCR_000765) Copy
http://zebrafishucl.org/zebrafishbrain#about-1
Collates and curates neuroanatomical data and information generated both in-house and by community to communicate current state of knowledge about neuroanatomical structures in developing zebrafish. Most of data come from high resolution confocal imaging of intact brains in which neuroanatomical structures are labelled by combinations of transgenes and antibodies. Community repository for image based data related to neuroanatomy of zebrafish.
Proper citation: Zebrafish Brain Atlas (RRID:SCR_000606) Copy
http://www.nature.com/jcbfm/index.html
The Journal of Cerebral Blood Flow & Metabolism stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists. On this website, you will find the full text of articles published online weekly, in advance of print, the current issue and an archive of previous issues. You can also find general information about the journal, and more detailed information for readers, authors, referees, librarians, advertisers, and journalists. Most articles are published online before they appear in print. New papers are uploaded weekly to the Advance online publication (AOP) page. The online publication date is specified for each paper; these versions are identical to the printed version in every respect and may be cited using the digital object identifier (DOI).
Proper citation: Journal of Cerebral Blood Flow and Metabolism (RRID:SCR_001769) Copy
http://neuroscience.ucdavis.edu/
Recognizing the importance of research in Neuroscience and its great promise, as well as the importance of educating the neuroscientists of the future, the University of California, Davis, in 1990, established The Center for Neuroscience. The Center has now become the focus of interdisciplinary studies in Cellular, Molecular, Systems, Cognitive and Translational Neuroscience, with a Faculty made up of world leaders in brain research. The Center occupies facilities especially designed to promote and foster interactions among the resident faculty, associated faculty, postdoctoral fellows, and graduate students, with state-of-the-art lab space and associated facilities such as cellular and molecular imaging, functional imaging of the human brain and extensive databasing facilities. The Center provides an attractive setting for seminar series that feature distinguished National and International guest speakers as well as speakers from the UC Davis community of scientists. The Center is home to a number of visiting scholars each year and enjoys a lively intellectual atmosphere.
Proper citation: University of California Davis Center for Neuroscience (RRID:SCR_001640) Copy
http://neuroimage.usc.edu/brainstorm/
Software as collaborative, open source application dedicated to analysis of brain recordings: MEG, EEG, fNIRS, ECoG, depth electrodes and animal invasive neurophysiology. User-Friendly Application for MEG/EEG Analysis.
Proper citation: Brainstorm (RRID:SCR_001761) Copy
http://dynamicbrain.neuroinf.jp/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 19. 2022. Platform to promote studies on dynamic principles of brain functions through unifying experimental and computational approaches in cellular, local circuit, global network and behavioral levels. Provides services such as data sets, popular research findings and articles and current developments in field. This site has been archived since FY2019 and is no longer updated.
Proper citation: Dynamic Brain Platform (RRID:SCR_001754) Copy
http://cmbn-approd01.uio.no/nesys/
Public neuroscience database providing a collection of published data describing structure and structure-function relationships in one of the largest projection systems of the brain: the cerebro-cerebellar system. It also gives access to a suite of tools that allow the user to visualize and analyze any selected combination of data sets. Contact them if you are interested in contributing data. The overall goal is to improve communication of results and permit re-use of previously published data in new contexts. FACCS is a part of the Rat Brain WorkBench, a new research and development project funded by The Research Council of Norway, the Centre for Molecular Biology and Neuroscience, and the European Union. The project is directed by Jan G. Bjaalie, Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Proper citation: Functional Anatomy of the Cerebro-Cerebellar System (FACCS) (RRID:SCR_001661) Copy
https://lcn.salk.edu/WSMain.html
The Salk Institute's Laboratory for Cognitive Neuroscience (LCN) is dedicated to the study of the neural and genetic underpinnings of language and cognition. The LCN organizes its resources into two research foci: Linking Gene, Brain, and Cognition, and Language, Modality and the Brain. Linking Gene, Brain, and Cognition: Behavioral Neurogenetics: - This research is designed to increase the understanding of genetically based disorders, to investigate the consequences of genetic alterations on the development of the brain, and to explore the resulting alteration of cognitive capabilities. Language, Modality, and the Brain: - The focus of this research is to obtain a greater understanding of how language and cognition are represented in the brain. Sponsors: This resource is supported by LCN.
Proper citation: Salk Institute for Medical Research: Laboratory for Cognitive Neuroscience (RRID:SCR_001851) Copy
Tool that provides an interactive method to examine quantitative relationships between brain regions defined by different digital atlases or parcellation methods. Its current focus is for human brain imaging, though the techniques generalize to other domains. The method offers a quantitative answer to the nomenclature problem in neuroscience by comparing brain parts on the basis of their geometrical definitions rather than on the basis of name alone. Thus far these tools have been used to quantitatively compare eight distinct parcellations of the International Consortium for Brain Mapping (ICBM) single-subject template brain, each created using existing atlasing methods. This resources provides measures of global and regional similarity, and offers visualization techniques that allow users to quickly identify the correspondences (or lack of correspondences) between regions defined by different atlases.
Proper citation: OBART (RRID:SCR_001903) Copy
Project content including raw image data, neuronal tracings, image registration tools and analysis scripts covering three manuscripts: Comprehensive Maps of DrosophilaHigher Olfactory Centres : Spatially Segregated Fruit and Pheromone Representation which uses single cell labeling and image registration to describe the organization of the higher olfactory centers of Drosophila; Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe which uses single cell labeling to describe the organization of the antennal lobe local interneurons; and Sexual Dimorphism in the Fly Brain which uses clonal analysis and image registration to identify a large number of sex differences in the brain and VNC of Drosophila. Data * Raw Data of Reference Brain (pic, amira) (both seed and average) * Label field of LH and MB calyx and surfaces for these structures * Label field of neuropil of Reference Brain * Traces (before and after registration). Neurolucida, SWC and AmiraMesh lineset. * MB and LH Density Data for different classes of neuron. In R format and as separate amira files. * Registration files for all brains used in the study * MBLH confocal images for all brains actually used in the study (Biorad pic format) * Sample confocal images for antennal lobe of every PN class * Confocal stacks of GABA stained ventral PNs Programs * ImageJ plugins (Biorad reader /writer/Amira reader/writer/IGS raw Reader) * Binary of registration, warp and gregxform (macosx only, others on request) * Simple GUI for registration tools (macosx only at present) * R analysis/visualization functions * Amira Script to show examples of neuronal classes The website is a collaboration between the labs of Greg Jefferis and Liqun Luo and has been built by Chris Potter and Greg Jefferis. The core Image Registration tools were created by Torsten Rohlfing and Calvin Maurer.
Proper citation: Flybrain at Stanford (RRID:SCR_001877) Copy
Databases of accumulating BMI (Brain Machine Interfaces)-related experimental data, mathematical models, and tools generated in neuroscience, computational theory, and robotics. Databases include: # Database of BMI (Brain Machine Interfaces)-related papers: More than 3500 BMI-related papers are registered. Each paper has original tags, for example, recording method and subject, for easy searching. # Database of original contents: BMI-related materials (Movie, Picture, Data, Program) provided by scientists. # Database of BMI-related research sites: 185 BMI-related research sites in the world (university, institute and company) are registered. The research site can be searched either by the location using clickable map or by the field of interest. # Database of BMI-related materials: Links to BMI-related materials (Movie, Picture, Document, Data, Program) are listed. You can easily find materials of your interest since each material is classified into research field. # BMI-related column: The columns are written by researchers specialized in BMI. Original contents include: * Neuronal activity during performance of a memory-guided movement * Reconstructed visual images from human fMRI activity * fMRI data and program for visual image reconstruction * Brain sections of monkeys, stained for several gene markers * Cortical Box Method: The Cortical box method is an analytical method that standardizes the serial coronal sections of rodent cortex for quantitative analysis. * Multineuron activity in monkey prefrontal cortex * Monkey Atlas: **Brain sections of monkeys, stained for AChE, ER81 mRNA and Sema3E mRNA - These pictures are low-resolution photos of serial brain sections of monkeys, stained for AChE as well as for ER81 and Sema3E mRNAs. The compressed file contains JPEG photos and html files for web browser navigation. Other materials are available at our website BraInSitu dedicated for in situ hybridization resources for brains. BraInSitu http://www.nibb.ac.jp/brish/indexE.html ** MRI Brain Atlas of Japanese Snow Monkey (Macaca Fuscata) at different ages - MRI Brain Atlas of Japanese Snow Monkey (Macaca Fuscata) at different ages ** The Stereotaxic MRI Brain Atlas of Japanese Snow Monkey - The Stereotaxic MRI Brain Atlas of Japanese Snow Monkey * Monkey M1 BMI ** m-file for checking the results of wrist angle estimation- This program is m-file to train the relationship between joint angles and EMG signals using artificial neural network. The input signals are four EMG signals and the output signals are joint angles of wrist, such as flexion/extension, radial deviation/uln ** m-file for training of wrist angle estimation -This program is m-file to train the relationship between joint angles and EMG signals using artificial neural network. The input signals are four EMG signals and the output signals are joint angles of wrist, such as flexion/extension, radial deviation/ulnar deviation.ar deviation. ** M1 Neuronal Activity during monkey performing a motor task - video/x-ms-wmv ** Muscle tension - To estimate muscle tension from raw emg signal ** raw EMG signal - Raw EMG signal for 5 seconds ** training data of wrist angle and emg signal - This program is m-file to train the relationship between joint angles and EMG signals using artificial neural network. The input signals are four EMG signals and the output signals are joint angles of wrist, such as flexion/extension, radial deviation/ulnar deviation. ** Weight file of neural network - This program is m-file to train the relationship between joint angles and EMG signals using artificial neural network. The input signals are four EMG signals and the output signals are joint angles of wrist, such as flexion/extension, radial deviation/ulnar deviation. * Multineuron activity in monkey prefrontal cortex: Multineuron activity in monkey prefrontal cortex recorded by 3 tetrodes. Vertical 4 lines indicate one tetrode. Adjacent tetrodes are around 500 micron apart to each other.
Proper citation: Brain Machine Interface Platform (RRID:SCR_001813) Copy
http://www.cogsci.ucsd.edu/index.php
This UCSD department, the first Cognitive Science Department in the world, provides a focus for the continued evolution of the discipline of cognitive science. Cognitive science is a diverse field unifying three broad categories: the brain, behavior and computation. It's the study of how people, animals and computers think, act and learn. In order to understand the mind/brain, cognitive science brings together the methods and discoveries from neuroscience, psychology, linguistics, anthropology, philosophy and computer science. The interdisciplinary aspects of cognitive science continue to flourish, and the participation of the broader cognitive science community on campus continues to be fundamental to cognitive science as practiced at UCSD. The interdisciplinary Ph.D. program continues to be offered as a degree option (in addition to the departmental Ph.D.), with participation by members of the Departments of Anthropology, Biology, Cognitive Science, Communication, Computer Science and Engineering, Linguistics, Music, Neuroscience, Philosophy, Psychiatry, Psychology, and Sociology. Cognitive Science is a relatively young field that focuses on conducting new research into the field or applying existing knowledge into new applications. This Department contains several research labs each specializing in different areas and the Department's faculty has also been published many times in various publications. Sponsors: This department is supported by the University of California at San Diego.
Proper citation: UCSD Cognitive Science: The Future of Cognitive Science (RRID:SCR_001926) Copy
The Neural Information Processing Systems (NIPS) Foundation is a non-profit corporation whose purpose is to foster the exchange of research on neural information processing systems in their biological, technological, mathematical, and theoretical aspects. Neural information processing is a field which benefits from a combined view of biological, physical, mathematical, and computational sciences. The primary focus of the NIPS Foundation is the presentation of a continuing series of professional meetings known as the Neural Information Processing Systems Conference, held over the years at various locations in the United States and Canada.
Proper citation: NIPS - Neural Information Processing Systems Conference (RRID:SCR_001998) Copy
Center for advancing scientific understanding and improving the health and well-being of humans and nonhuman primates. The Center conducts research in microbiology and immunology, neurologic diseases, neuropharmacology, behavioral, cognitive and developmental neuroscience, and psychiatric disorders.
Proper citation: Yerkes National Primate Research Center (RRID:SCR_001914) Copy
http://hendrix.ei.dtu.dk/software/mriwarp/mriwarp.html
Warping tool for intersubject registration of brain images consisting of C functions for Unix systems plus Matlab visualization utility functions. Apart from warping there are also (command line) functions for ANALYZE header information, mirroring, translation, subsampling. The package cannot only be used as a preprocessing step in function neuroimaging but also as a step in deformation-based morphometry.
Proper citation: MRIWarp (RRID:SCR_002072) Copy
Computational neuroscience center that observes and models how functional activities in multiple brain areas interact dynamically to support human cognition, creativity and social interaction. Center research involves development computational methods and software, experimental methods and equipment, collection and analysis of human cognitive experiments, and collaborations to analyze data collected by other groups in such experiments. The Center has a 72-channel EEG recording system customized for use in the fMRI environment, and a very-high density Biosemi Active Two active-electrode EEG system, rapidly configurable either as a 256-channel system for a single subject or as two 136-channel systems for recording from two subjects simultaneously. In addition, UCSD now has a 306-channel MEG plus 128-channel EEG system (Neuromag/Elektra). Projects in the Center include studies of human cognitive processes including attention and memory, role of the anterior/posterior cingulate, time perception and emotional expression. Data acquisition includes high-density EEG, concurrent EEG and fMRI recording and analysis, and face video processing. Current analysis approaches include independent component and time-frequency analysis.
Proper citation: Swartz Center for Computational Neuroscience (RRID:SCR_001933) Copy
http://www.pc.rhul.ac.uk/staff/J.Larsson/software.html
Set of programs and Tk/Tcl scripts, with a GUI wrapper, for extracting the inner and outer cortical surfaces from a T1-weighted MR image of the human brain. It is based on the TFI C++ library and is written for a Unix-based environment (specifically 64-bit and 32-bit versions of Ubuntu). As a courtesy to Apple users a version for Apple/X11 is maintained but the OS X version will always lag the Linux version; also, because some of the third-party libraries SurfRelax relies on may not be supported in or compatible with future versions of OS X, there is no guarantee that the OS X version will be supported indefinitely. Although in principle SurfRelax could be run under Windows (using Cygwin), because of the difficulties of maintaining multiple platforms and the limited support libraries available under Cygwin, there will no longer be support for SurfRelax on this platform. The surfaces are guaranteed to be topologically equivalent to a sphere, thereby obviating the need for handle removal. SurfRelax requires no user intervention, although minor manual editing is recommended for optimal results (normally less than 10 minutes per hemisphere). SurfRelax has several properties that compare favorably with other software packages for surface reconstruction: * Free software - The binaries (written in C++ and Tcl/Tk) are in the public domain. The source code will be released once legacy code issues have been resolved (i.e. replacing with GPL code). * Uses standard public file formats: Analyze file format (SPM/FSL-compatible) for volumes and OOGL OFF binary format for surfaces (see www.geomview.org (http://www.geomview.org/docs/html/geomview_26.html#OOGLRef)) * Combines advantages of volumetric and surface-based methods for surface generation * Correct topology of output surface guaranteed * Requires little or no user intervention - no need for manual handle removal * Relatively robust to noise - multi-scale method compensates for partial volume effects and intensity inhomogeneities * Relatively fast (an entire brain is segmented, extracted and unfolded in less than 2 hours of CPU time) * Powerful editing and visualization tools for volumes and surfaces * Readily extendable - for instance for use with monkey brains or children's brains * Can be used to visualize functional data from SPM or FSL * Includes tools for integration with Stanford's VISTASOFT tools for FMRI data analysis (white.stanford.edu)
Proper citation: SurfRelax (RRID:SCR_002139) Copy
http://www.rls.org/Page.aspx?pid=540
The Restless Legs Syndrome Foundation established the RLS Foundation Brain Bank at the Harvard Brain Tissue Resource Center in 2000. A part of the Harvard University medical system, the Center (housed at McLean Hospital and commonly referred to as The Brain Bank) began in 1978 as a centralized resource for the collection and distribution of human brain specimens for research and diagnostic studies. Over the years, hundreds of scientists from the nation''s top research and medical centers have requested tissue from The Brain Bank for their investigations. Because most of these studies can be carried out on a very small amount of tissue, each donated brain provides a large number of samples for many researchers. For comparative purposes, brain tissue is needed from healthy individuals, as well as from those who had RLS. When possible, a small portion of frozen tissue taken from each brain donated to the RLS Foundation Collection will be kept available to serve as a resource for future genetic testing. The process of donating your brain to RLS research is broken down into 5 steps. To view these steps, please read our Process Steps in RLS Brain Tissue Collection. To read about the process of donating brain tissue for research, visit our Brain Bank Tissue Donation page.
Proper citation: RLS Foundation Brain Bank (RRID:SCR_005089) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.