Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 686 results
Snippet view Table view Download 686 Result(s)
Click the to add this resource to a Collection

http://www.okbtf.org/

The Oklahoma Brain Tumor Foundation (OKBTF) is a nonprofit organization that provides education, advocacy and support for Oklahomans with brain tumors and their families to improve their quality of life and help find a cure. Founded by Nancy Thomason after the death of her son Cade Thomason to a brain stem PNET tumor on February 17, 2000, she vowed to fight the disease in honor and memory of her son Cade. OKBTF is dedicated to meeting the needs of Oklahoma families, caregivers and patients affected by primary brain or central nervous system tumors. We work to provide for needs through education, advocacy, research and service. Whatever your needs, whether financial, physical, mental or spiritual, we will work with you to fight the battle. Here you will find many of the services we offer in support of families just like yours, who are confused, hurting and just wanting straight answers. Feel free to browse around, get to know us, see what we are doing to help and send us your comments or questions... We are here for you.

Proper citation: Oklahoma Brain Tumor Foundation (RRID:SCR_004748) Copy   


http://brainbank.ucla.edu/

A biomaterial supply resource which collects, stores, and distributes donated tissue to research scientists around the world. Collection occurs through the an anatomical donor program which accepts tissue donation from people with neurological/ psychiatric disorders. The Center also provides a continuous boost to biomedical research by providing high quality and quantity of pre- and post-mortem brains, spinal cords, cerebrospinal fluid (CSF), serum, blood cells and urine to use in investigations of neurological and psychiatric diseases. Scientists without a clinical site may use the Center''s readily available, high quality banked specimens.

Proper citation: Human Brain and Spinal Fluid Resource Center (RRID:SCR_004811) Copy   


  • RRID:SCR_004951

    This resource has 1+ mentions.

http://brainliner.jp

Portal and tools for sharing and editing neurophysiological and behavioral data for brain-machine interface research. Users can search for existing data or login with their Google, Facebook, or Twitter account and upload new data. Their main focus is on supporting brain-machine interface research, so we encourage users to not just provide recordings of brain activity data, but also information about stimuli, etc., so that statistical relationships can be found between stimuli and/or subject behavior and brain activity. The Matlab tools are for writing, reading, and converting Neuroshare files, the common file format. A free, open source desktop tool for editing neurophysiological data for brain-machine interface research is also available: https://github.com/ATR-DNI/BrainLiner Since data formats aren''''t standardized between programs and researchers, data and analysis programs for data cannot be easily shared. Neuroshare was selected as the common file format. Neuroshare can contain several types of neurophysiological data because of its high flexibility, including analog time-series data and neuronal spike timing. Some applications have plug-ins or libraries available that can read Neuroshare format files, thus making Neuroshare somewhat readily usable. Neuroshare can contain several types of neurophysiological data, but there were no easy tools to convert data into the Neuroshare format, so they made and are providing a Neuroshare Converter Library and Simple Converter using the library. In future work they will make and provide many more useful tools for data sharing. Shared experiments include: EMG signal, Takemiya Exp, Reconstruct (Visual image reconstruction from human brain activity using a combination of multi-scale local image decoders), SPIKE data, Speech Imagery Dataset (Single-trial classification of vowel speech imagery using common spatial patterns), Functional Multineuron Calcium Imaging (fMCI), Rock-paper-scissors (The data was obtained from subject while he make finger-form of rock/paper/scissors). They also have a page at https://www.facebook.com/brainliner where you can contact us

Proper citation: BrainLiner (RRID:SCR_004951) Copy   


http://www.tnp.pitt.edu/pages/donationfrm_mb.htm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 19,2024. Brain tissue donation is a valuable contribution to mental health research. It enables scientists to investigate how the normal brain works, and how the brain is disturbed when it is affected by schizophrenia, depression, bipolar (manic depressive) disease or other related disorders. The Department of Psychiatry at the University of Pittsburgh has established a brain tissue bank to which brain tissue can be donated at no expense. The gift of brain tissue enables scientists to conduct research designed to understand causes, to develop new treatments, and ultimately to find cures for diseases that affect the brain. Brain tissue donation is a gift that makes it possible for researchers to study various types of mental disorders. Donations of brain tissue from individuals without these disorders are also needed to establish comparisons with brain samples from individuals who have these disorders. Any legally competent adult or guardian may indicate during life their interest in donating brain tissue after death. Next-of-kin either of healthy individuals or of those with psychiatric disorders may give consent to donate brain tissue following the death of a loved one. Brain tissue is removed during autopsy at a morgue or hospital and is transported to the University of Pittsburgh Medical Center for examination and study.

Proper citation: University of Pittsburgh Brain Tissue Donation Program (RRID:SCR_005028) Copy   


https://adrc.mc.duke.edu/index.php/research/brain-bank

A research repository of human brains with neurological disorders and normal controls, recruited through the Autopsy and Brain Donation Program coordinator. The Kathleen Price Bryan Brain Bank contains brains from patients with Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Muscular Dystrophy, and other neurological and dementing disorders. The brain tissue is subjected to a detailed neuropathological evaluation and then stored as fixed and frozen hemispheres, paraffin blocks and histological slides. After receipt of an IRB approved request, tissue is supplied to investigators at Duke University, major medical centers and pharmaceutical companies across the United States and worldwide.

Proper citation: Duke University Kathleen Price Bryan Brain Bank (RRID:SCR_005022) Copy   


http://glioblastoma.alleninstitute.org/

Platform for exploring the anatomic and genetic basis of glioblastoma at the cellular and molecular levels that includes two interactive databases linked together by de-identified tumor specimen numbers to facilitate comparisons across data modalities: * The open public image database, here, providing in situ hybridization data mapping gene expression across the anatomic structures inherent in glioblastoma, as well as associated histological data suitable for neuropathological examination * A companion database (Ivy GAP Clinical and Genomic Database) offering detailed clinical, genomic, and expression array data sets that are designed to elucidate the pathways involved in glioblastoma development and progression. This database requires registration for access. The hope is that researchers all over the world will mine these data and identify trends, correlations, and interesting leads for further studies with significant translational and clinical outcomes. The Ivy Glioblastoma Atlas Project is a collaborative partnership between the Ben and Catherine Ivy Foundation, the Allen Institute for Brain Science and the Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment.

Proper citation: Ivy Glioblastoma Atlas Project (RRID:SCR_005044) Copy   


http://www.bri.ucla.edu

Portal touching on all aspects of neuroscience from molecules to the mind, from the laboratory bench to the patient's bedside. Members study the normal structure and workings of the nervous system, its development, its cognitive functions, its derangement by disease and injury, and the means of its repair and protection. Projects span traditional disciplinary boundaries, as do graduate and postdoctoral training programs. Its major achievement has been to foster and improve multidisciplinary collaborations which has increasingly permitted the identification of pathogenic mechanisms and the formulation of new therapeutic approaches.

Proper citation: Brain Research Institute (RRID:SCR_004988) Copy   


  • RRID:SCR_005063

http://211.73.64.34/NNG

Neuron Navigator (NNG) integrates a 3D neuron image database into an easy-to-use visual interface. Via a flexible and user-friendly interface, NNG is designed to help researchers analyze and observe the connectivity within the neural maze and discover possible pathways. With NNG''s 3D neuron image database, researchers can perform volumetric searches using the location of neural terminals, or the occupation of neuron volumes within the 3D brain space. Also, the presence of the neurons under a combination of spatial restrictions can be shown as well. NNG is a result of a multi-discipline collaboration between neuroscientists and computer scientists, and NNG has now been implemented on a coordinated brain space for the Drosophila (fruit fly) brain. Account is required.

Proper citation: Neuron Navigator (RRID:SCR_005063) Copy   


http://www.med.umkc.edu/psychiatry/nbtb/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. The UMKC Neuroscience Brain Tissue Bank and Research Laboratory has been established to obtain, process, and distribute human brain tissue to qualified scientists and clinicians dedicated to neuroscience research. No other living organ approaches the human brain in complexity or capacity. Healthy, it astounds and inspires miracles. Diseased, it confounds and diminishes hope. The use of human brain tissue for research will provide insight into the anatomical and neurochemical aspects of diseased and non-diseased brains. While animal models are helpful and necessary in understanding disease, certain disorders can be more efficiently studied using human brain tissue. Also, modern research techniques are often best applied to human tissue. We also need samples of brain tissue that have not been affected by disease. They help us to compare a 'normal' brain with a diseased one. Also, we have a critical need for brain donations from relatives who have genetically inherited disorders. Tissue preparation consists of fresh quick-frozen tissue blocks or coronal slices (nitrogen vapor frozen; custom dissection of specific anatomic regions) or formalin-fixed coronal slices (custom dissection of specific anatomic regions).

Proper citation: UMKC Neuroscience Brain Tissue Bank and Research Laboratory (RRID:SCR_005148) Copy   


  • RRID:SCR_005113

    This resource has 1+ mentions.

http://www.kavlifoundation.org/

The Kavli Foundation, based in Oxnard, California, is dedicated to advancing science for the benefit of humanity, promoting public understanding of scientific research, and supporting scientists and their work. The Foundation''s mission is implemented through an international program of research institutes, professorships, symposia and other initiatives in the fields of astrophysics, nanoscience, neuroscience and theoretical physics. The Foundation is also a founding partner of the Kavli Prizes, which recognize scientists for their seminal advances in astrophysics, nanoscience and neuroscience. To date, The Kavli Foundation has made grants to establish Kavli Institutes on the campuses of the University of California Santa Barbara, Stanford University, the California Institute of Technology, the University of Chicago, Columbia University, Yale University, Cornell University, the University of California San Diego, Delft University of Technology in the Netherlands, the Massachusetts Institute of Technology, Peking University, the Chinese Academy of Sciences, Harvard University, the University of Cambridge and the Norwegian University of Science and Technology. In addition to the Kavli Institutes, six Kavli professorships have been established: two at the University of California Santa Barbara, one at University of California Los Angeles, one at the University of California Irvine, one at Columbia University, and one at the California Institute of Technology. The Kavli Futures Symposia a series of high quality scientific symposia on topics of emerging importance in the fields of astrophysics, nanoscience and neuroscience. The Frontiers of Science symposia bring together some of the very best young scientists across many disciplines to share and discuss exciting advances and opportunities in their fields. Videos and feature pieces have been created for teachers and students. This includes video interviews with acclaimed researchers Eric Kandel, M.D. and Edvard and May-Britt Moser, a video introduction and panel discussion on neuroscience, feature stories, written science overview, institute profiles and other materials. The Kavli Foundation is a private foundation qualified under IRC Section 501 (c) (3).

Proper citation: Kavli Foundation (RRID:SCR_005113) Copy   


  • RRID:SCR_010559

    This resource has 10+ mentions.

http://www.blueprintnhpatlas.org/

Atlas of gene expression in the developing rhesus macaque brain. This atlas is a free online resource with a unique set of data and tools aimed to create a developmental neuroanatomical framework for exploring the cellular and molecular architecture of the developing postnatal primate brain with direct relevance for human brain development. The atlas includes: * Microarray ** Microdissection: Fine structure transcriptional profiling across postnatal development for fine nuclear subdivisions of the prefrontal cortex, primary visual cortex, hippocampus, amygdala and ventral striatum ** Macrodissection: Gross structure transcriptional profiling across postnatal development for the same structures * ISH: ** Cellular resolution in situ hybridization image data of five major brain regions during postnatal developmental periods for genes clinically important for a variety of human neurodevelopmental disorders, including prefrontal cortex, primary visual cortex, hippocampus, amygdala and ventral striatum. ** Serial analysis of selected genes across the entire adult brain, focusing on cellular marker genes, genes with cortical area specificity and gene families important to neural function. * ISH Anatomic Search: Detailed gene expression search on the ISH data based on expert annotation * Reference Data: Developmental stage-specific reference series, consisting of magnetic resonance imaging (MRI) and Nissl histology to provide a neuroanatomical context for the gene expression data. These data and tools are designed to provide a valuable public resource for researchers and educators to explore neurodevelopment in non-human primates, and a key evolutionary link between other Web-based gene expression atlases for adult and developing mouse and human brain.

Proper citation: NIH Blueprint NHP Atlas (RRID:SCR_010559) Copy   


  • RRID:SCR_010520

    This resource has 1+ mentions.

http://www.mssm.edu/research/programs/manhattan-hiv-brain-bank/

Biorepository of tissues and fluids relevant for the neurologic, neuropsychologic, psychiatric and neuropathologic manifestations of HIV infection, linked to medical records and an on-going clinical trial for research use by the scientific community. The MHBB conducts a longitudinal, observational study that follows a group of HIV-infected individuals who have agreed to be fluid and organ donors for the purposes of AIDS research. They are currently the largest, multidisciplinary neuroAIDS cohort in New York City, the epicenter of the US HIV epidemic. Research participants undergo regular neurologic, neuropsychologic, and psychiatric evaluations, and provide body fluid samples that are linked to clinical information. Upon their demise, study participants become organ donors. This program has supplied clinical information, tissue, and fluid samples to over 70 qualified AIDS researchers across America, Europe and Australia. In fulfilling its resource mission, the MHBB functions as part of the National NeuroAIDS Tissue Consortium (NNTC). MHBB provides a means by which people living with HIV can be engaged in the struggle to improve our knowledge about HIV infection and the damage it causes to the body.

Proper citation: Manhattan HIV Brain Bank (RRID:SCR_010520) Copy   


  • RRID:SCR_010641

http://brainandsociety.org/the-brain-observatory

Formerly a topical portal studying the brain which collected and imaged 1000 human brains, the Brain Observatory has partnered with the Institute for Brain and Society to build virtual laboratories that will feed directly into the database of images and knowledge created in the context of the Human Brain Library. The Brain Observatory will also host exhibits, conferences, and events aimed at promoting a heightened awareness of brain research and how its results can benefit personal brain fitness and mental health.

Proper citation: Brain Observatory (RRID:SCR_010641) Copy   


http://diademchallenge.org/data_sets.html

A software development competition, the DIADEM Challenge,to benefit the scientific community by encouraging the development of better software for automating three-dimensional reconstructions of neuronal arbors. The intent of the Sponsors is to ensure that the best software submitted for the competition is made available to the scientific community within a reasonable time and on reasonable terms. No purchase is necessary to enter or win. The competition will have two rounds. As of April 10, 2009, individuals and teams may register to participate in the competition and may download sets of image stacks (Data Sets) of non-human animal brains along with three-dimensional reconstructions for some of these Data Sets for training purposes. Submissions of software, including executable programs, supporting documentation, and reconstruction files for the Data Sets, must be uploaded to the competition website no later than April 9, 2010. In order to be eligible to win the competition, the individuals and at least one member of any teams whose submissions are selected for the Final Round (Finalists) must participate in the Final Round and scientific conference. Personal participation in the Final Round and scientific conference is important for two main reasons: first, because the Finalists software will be tested at the Final Round against additional Data Sets so that the judges can select a winner or winners, and second, because the larger scientific conference, of which the Final Round will be a part, is intended to foster extensive scientific interaction among neuroscientists and computational scientists, including plenary and poster sessions to discuss challenges, solutions, and future directions. There are 5 datasets, all of which have to be reconstructed for the qualifier phase. Once you have registered your group, dataset download information will be sent to you via E-mail. The 5 datasets are: - Cerebellar Climbing Fibers - Hippocampal CA3 Interneuron - Neocortical Layer 6 Axons - Neuromuscular Projection Fibers - Olfactory Projection Fibers Sponsors: The sponsors of this competition are: Allen Institute for Brain Science, Seattle, Washington; Howard Hughes Medical Institute (HHMI), Chevy Chase, Maryland; and Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia.

Proper citation: DIADEM Challenge: DIgital reconstruction of Axonal and DEndritic Morphology (DIADEM) Software Development Competition (RRID:SCR_008262) Copy   


http://www.ini.uzh.ch/

The mission of the Institute is to discover the key principles by which brains work and to implement these in artificial systems that interact intelligently with the real world. The Institute of Neuroinformatics is built of many people covering a wide range of disciplines and research areas. The major research projects and areas are listed below. - Behavior and Cognition: At the Institute of Neuroinformatics researchers investigate in Behavior and Cognition on various levels, ranging from neuronal circuit models of learning and adaptation over psychophysical experiments for color constancy up to modeling complex behavioral tasks such as exploration and goal-directed navigation. - Computation in Neural Circuits: By examining the brains of cats, rats and monkeys, and by making simulations of the cortex, INI hopes to learn how this circuit performs such widely different tasks. This knowledge might lead to advances in how computers are designed, and will certainly lead to advances in the subtlety and power of medical neuroscience. - Neurotechnologies: INI aims to harness the principles of biological computation, which can be expected to have a major impact on the technology market as autonomous intelligence pervades equipment, vehicles, buildings, utilities and clothing. Sponsors: INI is supported by European Union (EU), Gerbert Ruf Stiftung, Neuroscience Center (ZNZ), Swiss Confederation (KTI), Swiss Federal Institute of Technology Zurich (ETH), Swiss National Science Foundation (SNF), University of Zurich (UZH), and VW Stiftung

Proper citation: Institute of Neuroinformatics (RRID:SCR_008331) Copy   


http://psychiatry.stanford.edu/alzheimer/

Portal for gerontology research with a variety of clinical, research and educational programs, with the aim of improving the lives of those affected by Alzheimer's Disease and memory losses associated with normal aging. The Center investigates the nature of Alzheimer's Disease, its progression over time, its response to treatments, and problems patients and caregivers experience in dealing with the changes that occur. It also conducts studies that look at changes that occur over the course of normal aging and have a Normal Aging Brain Donor Program. The Aging Clinical Research Center puts out a newsletter that showcases various projects and includes informative articles on dementia.

Proper citation: Stanford/VA Aging Clinical Research Center (RRID:SCR_008678) Copy   


http://www.brainvoyager.de/BV2000OnlineHelp/BrainVoyagerWebHelp/Talairach_brain_atlas.htm

The Talairach brain atlas visualized via BrainVoyager (Commercial software) can be used to visualize Brodmann areas as they were defined for the Talairach brain (Talairach & Tournaux, 1988) and to compare regions of subjects with respect to the Brodmann areas. The demarcated areas are based on the Talairach demon, which is a digitized version of the Talairach atlas and which has been transferred into BrainVoyager VOI files by Matthias Ruf, Mannheim. Using the Brodman.voi file you may ask questions like the following: What is the signal time course of subject N in experiment A within Brodmann area X ?. Note, however, that the defined areal boundaries should be used only as a rough guideline for determining the location of activated regions: There is substantial variation of histologically defined areas between subjects. Since cytoarchitectonically defined Brodmann areas are not available in vivo, we advise to use the provided information with care. The TalairachBrain.vmr file is located in the same folder as your BrainVoyager executable file. It can be loaded as any VMR project by using the Open... item in the File menu (or the Open icon). The TalairachBrain.vmr file is also loaded automatically when using the glass brain visualization tool.

Proper citation: BrainVoyager: Talairach Brain Atlas (RRID:SCR_008800) Copy   


http://www.cumc.columbia.edu/dept/taub/index.html

An institute which conducts research of Alzheimer's, Parkinson's and other age-related brain diseases. This organization also provides clinical evaluations to patients with memory problems, Alzheimer's disease or other types of dementia. Furthermore, the institute leads multi-center clinical trials for the treatment and prevention of Alzheimer's, Parkinson's and other age-related brain diseases. There is a brain donation program for enrolled/examined patients. The Education Core of the Taub Institute sponsors community events and Continuing Medical Education programs, as well as the distribution of periodic newsletters and brochures highlighting research developments and other Alzheimer's topics.

Proper citation: Taub Institute for Research on Alzheimers Disease and the Aging Brain (RRID:SCR_008802) Copy   


http://madrc.mgh.harvard.edu/

An Alzheimer's disease research center which supports new research and enhances ongoing research by providing core support to bringing together behavioral, biomedical, and clinical scientists. The Center conducts multidisciplinary research, trains scientists, and spreads information about Alzheimer's disease and related disorders to the general public. The principal goal of the Massachusetts ADRC is to support research in aging, Alzheimer's Disease and other related disorders. Researchers work with national and international multi-disciplinary teams to understand: normal aging, the transition from normal aging to mild forms of memory problems, and the later stages of dementia. The Massachusetts ADRC has an active brain donation program at the Massachusetts General Hospital (MGH) for patients as well as subjects enrolled in research studies.

Proper citation: Massachusetts Alzheimer's Disease Research Center (RRID:SCR_008764) Copy   


https://www.radc.rush.edu/res/ext/home.htm

An Alzheimer's disease center which researches the cause, treatment and prevention of Alzheimer's disease with a focus on four main areas of research: risk factors for Alzheimer's and related disorders, the neurological basis of the disease, diagnosis, and treatment. Data includes a number of computed variables that are available for ROS, MAP and MARS cohorts. These variables are under categories such as affect and personality, chronic medical conditions, and clinical diagnosis. Specimens include ante-mortem and post-mortem samples obtained from subjects evaluated by ROS, MAP and clinical study cores. Specimen categories include: Brain tissue (Fixed and frozen), Spinal cord, Muscles (Post-mortem), and Nerve (Post-mortem), among other types of specimens. Data sharing policies and procedures apply to obtaining ante-mortem and post-mortem specimens from participants evaluated by the selected cohorts of the RADC.

Proper citation: Rush Alzheimer's Disease Center (RRID:SCR_008763) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X