Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 526 results
Snippet view Table view Download 526 Result(s)
Click the to add this resource to a Collection

http://www.pencerbraintrust.com/

The Gerry & Nancy Pencer Brain Trust is a not-for-profit organization with a mandate to make a difference in the quality of life of people living with brain tumors. This registered charity is the primary source of funding for The Gerry & Nancy Pencer Brain Tumor Centre, and carries out annual fundraising events to support its'' ongoing research and patient care activities. The Gerry & Nancy Pencer Brain Tumor Centre is located in Toronto, Canada at the world-renowned Princess Margaret Hospital. The Centre provides multidisciplinary care, treatment, support, and education for brain tumor patients and their families, and promotes brain tumor research in the hopes of one day finding a cure for brain cancer. All of this is made possible through your very generous donations.

Proper citation: Gerry and Nancy Pencer Brain Trust (RRID:SCR_004762) Copy   


http://www.hmpdacc.org/

Common repository for diverse human microbiome datsets and minimum reporting standards for Common Fund Human Microbiome Project.

Proper citation: HMP Data Analysis and Coordination Center (RRID:SCR_004919) Copy   


http://vision.ucsf.edu/hortonlab/index.html

Devise better ways to prevent and treat vision loss due to amblyopia and strabismus, and to advance medical science by understanding the human visual system. Various Images, Videos and Talks related to the research are available. In the Laboratory for Visual Neuroscience at the University of California, San Francisco, we are seeking to discover how visual perception occurs in the human brain. The function of the visual system is to guide our behavior by providing an efficient means for the rapid assimilation of information from the environment. As we navigate through our surroundings, a continuous stream of light images impinges on our eyes. In the back of each eye a light-sensitive tissue, the retina, converts patterns of light energy into electrical discharges known as action potentials. These signals are conveyed along the axons of retinal ganglion cells to the lateral geniculate body, a relay nucleus in the thalamus. Most of the output of the lateral geniculate body is relayed directly to the primary visual cortex (striate cortex, V1), and then to surrounding visual association areas. To understand the function of the visual pathways, our research is focused on 5 major themes: * Organization of Primary Visual Cortex * Mapping of Extrastriate Visual Cortex * Amblyopia and Visual Development * Strabismus and Visual Suppression * The Human Visual Cortex

Proper citation: UCSF Laboratory for Visual Neuroscience (RRID:SCR_004913) Copy   


http://www.pbtfus.org/

The Pediatric Brain Tumor Foundation (PBTF) is a nonprofit organization dedicated to eradicating childhood brain tumors and providing support to families. It is a 501(c)(3) nonprofit charitable organization that seeks to * find the cause of and cure for childhood brain tumors by supporting medical research * increase public awareness about the severity and prevalence of childhood brain tumors * aid in the early detection and treatment of childhood brain tumors * support a national database on all primary brain tumors * provide educational and emotional support for children and families affected by this life-threatening disease. As the world''s largest non-governmental source of funding for childhood brain tumor research, we''re dedicated to not only eradicating this disease, but to providing support to families. Our educational resources deliver comfort and hope to families in need of information, and our college scholarship program gives brain tumor survivors a boost for the future. Through our efforts to raise public awareness, more attention has been focused on this deadly disease. Whether addressing congressional briefings or funding international conferences, the PBTF is an unwavering advocate. Together, we''re making a difference in the lives of children with brain tumors. And with your continued help, we will cure the kids!

Proper citation: Pediatric Brain Tumor Foundation (RRID:SCR_004755) Copy   


http://www.okbtf.org/

The Oklahoma Brain Tumor Foundation (OKBTF) is a nonprofit organization that provides education, advocacy and support for Oklahomans with brain tumors and their families to improve their quality of life and help find a cure. Founded by Nancy Thomason after the death of her son Cade Thomason to a brain stem PNET tumor on February 17, 2000, she vowed to fight the disease in honor and memory of her son Cade. OKBTF is dedicated to meeting the needs of Oklahoma families, caregivers and patients affected by primary brain or central nervous system tumors. We work to provide for needs through education, advocacy, research and service. Whatever your needs, whether financial, physical, mental or spiritual, we will work with you to fight the battle. Here you will find many of the services we offer in support of families just like yours, who are confused, hurting and just wanting straight answers. Feel free to browse around, get to know us, see what we are doing to help and send us your comments or questions... We are here for you.

Proper citation: Oklahoma Brain Tumor Foundation (RRID:SCR_004748) Copy   


http://www.vph-noe.eu/

The VPH NoE is a project which aims to help support and progress European research in biomedical modeling and simulation of the human body. This project will improve our ability to predict, diagnose and treat disease, and have a dramatic impact on the future of healthcare, the pharmaceutical and medical device industries. The VPH Network of Excellence (VPH NoE) is designed to foster, harmonize and integrate pan-European research in the field of i) patient-specific computer models for personalised and predictive healthcare and ii) ICT-based tools for modeling and simulation of human physiology and disease-related processes. The main objectives of the VPH Network of Excellence are to support the: :- Coordination of research portfolios of VPH NoE partners through initiation of Exemplar integrative research projects that encourage inter-institution and interdisciplinary VPH research; :- Integration of research infrastructures of VPH NoE partners through development of the VPH ToolKit: a shared and mutually accessible source of research equipment, managerial and research infrastructures, facilities and services; :- Development of a portfolio of interdisciplinary training activities including a formal consultation on, and assessment of, VPH careers; :- Establishment of a core set of VPH-related dissemination and networking activities which will engage everyone from partners within the VPH NoE/other VPH projects, to national policy makers, to the public at large; :- Creation of Industrial, Clinical and Scientific Advisory Boards that will jointly guide the direction of the VPH NoE and, through consultation, explore the practical and legal options for real and durable integration within the VPH research community; :- Implementation of key working groups that will pursue specific issues relating to VPH, notably integrating VPH research worldwide through international physiome initiatives. Finally, by involving clinical and industrial stakeholders, VPH NoE also plans to lay a reliable ground to support sustainable interactions and collaboration between research and healthcare communities. Virtual Physiological Human lists, as its main target outcome, patient-specific computer models for personalized and predictive healthcare and ICT-based tools for modeling and simulation of human physiology and disease-related processes. Collaborative projects (IPs and STREPs) within the call will meet specific objectives, addressing: patient-specific computational modeling and simulation of organs or systems data integration and new knowledge extraction and clinical applications and demonstration of tangible benefits of patient-specific computational models. The networking action outlined within the call - the VPH NoE - should serve to connect these efforts, and lay the foundations for the methodological and technical framework to support such research. It should also build on previous EC investment in this field, including the outcomes of VPH type' projects funded within the EU Sixth Framework Programme, and through other National and International initiatives. The Virtual Physiological Human Network of Excellence (VPH NoE) has been designed with "service to the community" of VPH researchers as its primary purpose. Its aims range from the development of a VPH ToolKit and associated infrastructural resources, through integration of models and data across the various relevant levels of physiological structure and functional organization, to VPH community building and support. The VPH NoE aims to foster the development of new and sustainable educational, training and career structures for those involved in VPH related science, technology and medicine. The VPH NoE constitutes a leading group of universities, institutes and organizations who will, by integrating their experience and ongoing activities in VPH research, promote the creation of an environment that actively supports and nurtures interdisciplinary research, education, training and strategic development. The VPH NoE will lead the coordination of diverse activities within the VPH Initiative to help deliver: new environments for predictive, patient-specific, evidence-based, more effective and safer healthcare; improved semantic interoperability of biomedical information and contribution to a common health information infrastructure; facile, on-demand access to distributed European computational infrastructure to support clinical decision making; and increased European multidisciplinary research excellence in biomedical informatics and molecular medicine by fostering closer cooperation between ICT, medical device, medical imaging, pharmaceutical and biotech companies. The VPH NoE will connect the diverse VPH Initiative projects, including not only those funded as part of the VPH initiative but also those of previous EC frameworks and national funding schemes, together with industry, healthcare providers, and international organizations, thereby ensuring that these impacts will be realized. VPH NoE work packages and project structure The VPH NoE activities are divided between five main work packages (follow the links at the top of the page for more information on each). In brief, the focus of each work package is as follows: -Work package 1: Network Management -Work package 2: VPH NoE Exemplar Projects -Work package 3: VPH NoE ToolKit development -Work package 4: VPH NoE Training and Career Development -Work package 5: Spreading Excellence within the VPH NoE and VPH-I In view of its role as the networking action for the VPH Initiative, all VPH NoE activities have been designed to serve and interconnect not only the VPH NoE core members, but also the projects funded within the VPH call (VPH-I) and the wider research community. Key activities which the VPH NoE will pursue, in support of the development of a research environment which facilitates integrative, interdisciplinary and multilevel VPH research, are: -Support for integrative research -Training and dissemination activities -Networking activities Sponsors: VPH NoE is supported by The Directorate-General Research (DG RTD) and The Directorate-General Information Society and Media (DG INFSO).

Proper citation: Virtual Physiological Human Network of Excellence (RRID:SCR_002855) Copy   


  • RRID:SCR_002850

    This resource has 50+ mentions.

http://www.ambystoma.org/

Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.

Proper citation: Sal-Site (RRID:SCR_002850) Copy   


http://cbio.mskcc.org/

Computational biology research at Memorial Sloan-Kettering Cancer Center (MSKCC) pursues computational biology research projects and the development of bioinformatics resources in the areas of: sequence-structure analysis; gene regulation; molecular pathways and networks, and diagnostic and prognostic indicators. The mission of cBio is to move the theoretical methods and genome-scale data resources of computational biology into everyday laboratory practice and use, and is reflected in the organization of cBio into research and service components ~ the intention being that new computational methods created through the process of scientific inquiry should be generalized and supported as open-source and shared community resources. Faculty from cBio participate in graduate training provided through the following graduate programs: * Gerstner Sloan-Kettering Graduate School of Biomedical Sciences * Graduate Training Program in Computational Biology and Medicine Integral to much of the research and service work performed by cBio is the creation and use of software tools and data resources. The tools that we have created and utilize provide evidence of our involvement in the following areas: * Cancer Genomics * Data Repositories * iPhone & iPod Touch * microRNAs * Pathways * Protein Function * Text Analysis * Transcription Profiling

Proper citation: Computational Biology Center (RRID:SCR_002877) Copy   


http://www.ouhsc.edu/compmed/documents/DevelopmentofaSpecificPathogenFreeBaboonColony.pdf

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 4th,2023. Program developing a self-sustaining colony of baboons free of all known herpesviruses, four retroviruses, and SV40 for research. When the program is fully developed, they will provide healthy, behaviorally normal, SPF baboons that are free of all known herpes viruses, four retroviruses, and SV40. To accomplish this goal, the center has established in collaboration with co-investigators and consultants serological and PCR tests for each of the 11 target viruses. These baboon viruses include six herpesviruses (analogs of human HSV, VZV, CMV, HHV6, EBV, and HHV8), four retroviruses (simian foamy virus, SRV/D, SIV, and STLV), and SV40. Twenty-four infant baboons are being recruited into the SPF program in each of the first five years, for a final total of at least 66 SPF baboons. All infants will be repeatedly tested for each of the target viruses. At one month of age, larger social groups of 4-6 SPF animals are formed. Beginning at 2-3 years of age, SPF animals will be integrated into larger socially compatible groups. These groups will eventually mature into breeding harems of SPF animals. This approach provides infants with age-matched companions for socialization during their early period of development, minimizes opportunities for transmission of viruses to the infants from adult animals, and allows for the simultaneous elimination of many different viruses from SPF animals.

Proper citation: Development of a Specific-Pathogen-Free Baboon Colony (RRID:SCR_002900) Copy   


https://www.msu.edu/~brains/index.html

The Brain Biodiversity Bank refers to the repository of images of and information about brain specimens contained in the collections associated with the National Museum of Health and Medicine at the Armed Forces Institute of Pathology in Washington, DC. Atlases and brain sections are available for a variety of mammals, and we are also developing a series of labeled atlases of stained sections for educators, students, and researchers. These collections include, besides the Michigan State University Collection, the Welker Collection from the University of Wisconsin, the Yakovlev-Haleem Collection from Harvard University, the Meyer Collection from the Johns Hopkins University, and the Huber-Crosby and Crosby-Lauer Collections from the University of Michigan. What we are doing currently at Michigan State is a series of demonstration projects for publicizing the contents of the collections and ways in which they can be used. For example, the images from the collection can be used for comparative brain study. We have prepared databases of the contents of the collections for presentation and use on this site, as well as for downloading by users in several formats. We are also developing a series of labeled atlases of stained sections for educators, students, and researchers. This internet site is associated with the Comparative Mammalian Brain Collections site. All of the images are in JPEG or GIF format.

Proper citation: Michigan State University Brain Biodiversity Bank (RRID:SCR_003289) Copy   


  • RRID:SCR_003525

http://en.wikibooks.org/wiki/Human_Physiology

Human Physiology is a featured book on Wikibooks because it contains substantial content, it is well-formatted, and the Wikibooks community has decided to feature it on the main page or in other places. Please continue to improve it and thanks for the great work so far! A printable and PDF version are available. You can edit its advertisement template. Contents: 1. Homeostasis 2. Cell Physiology 3. Integumentary System 4. The Nervous System 5. Senses 6. The Muscular System 7. Blood Physiology 8. The Cardiovascular System 9. The Immune System 10. The Urinary System 11. The Respiratory System 12. The Gastrointestinal System 13. Nutrition 14. The Endocrine System 15. The Male Reproductive System 16. The Female Reproductive System 17. Pregnancy and Birth 18. Genetics and Inheritance 19. Development: Birth through Death 20. Appendix 1: Answers to Review Questions 21. Authors 22. Further Reading

Proper citation: Human Physiology (RRID:SCR_003525) Copy   


  • RRID:SCR_002264

    This resource has 10+ mentions.

https://ostr.ccr.cancer.gov/resources/provider_details/nci-mouse-repository

The NCI Mouse Repository cryoarchives and distributes strains of genetically engineered mice that are of immediate interest to the cancer research community. These are either gene-targeted or transgenic mice that display a cancer-related phenotype, or tool strains (e.g., cre transgenics) that can be used to develop new cancer models. You do not have to be a member of the NCI Mouse Repository or a recipient of NCI funding to have your mouse model distributed through the NCI Mouse Repository. NCI Mouse Repository strains are maintained as live colonies or cryoarchived as frozen embryos, depending on demand. Up to three breeder pairs may be ordered from live colonies. Cryoarchived strains are supplied as frozen embryos or recovery of live mice by the NCI Mouse Repository may be requested.

Proper citation: NCI Mouse Repository (RRID:SCR_002264) Copy   


http://ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019.BGMUT was database that provided publicly accessible platform for DNA sequences and curated set of blood mutation information. Data Archive are available at ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive.

Proper citation: Blood Group Antigen Gene Mutation Database (RRID:SCR_002297) Copy   


http://learn.genetics.utah.edu/content/addiction/

A physiologic and molecular look at drug addiction involving many factors including: basic neurobiology, a scientific examination of drug action in the brain, the role of genetics in addiction, and ethical considerations. Designed to be used by students, teachers and members of the public, the materials meet selected US education standards for science and health. Drug addiction is a chronic disease characterized by changes in the brain which result in a compulsive desire to use a drug. A combination of many factors including genetics, environment and behavior influence a person's addiction risk, making it an incredibly complicated disease. The new science of addiction considers all of these factors - from biology to family - to unravel the complexities of the addicted brain. * Natural Reward Pathways Exist in the Brain: The reward pathway is responsible for driving our feelings of motivation, reward and behavior. * Drugs Alter the Brain's Reward Pathway: Drugs work over time to change the reward pathway and affect the entire brain, resulting in addiction. * Genetics Is An Important Factor In Addiction: Genetic susceptibility to addiction is the result of the interaction of many genes. * Timing and Circumstances Influence Addiction: If you use drugs when you are an adolescent, you are more likely to develop lifetime addiction. An individual's social environment also influences addiction risk. * Challenges and Issues in Addiction: Addiction impacts society with many ethical, legal and social issues.

Proper citation: New Science of Addiction: Genetics and the Brain (RRID:SCR_002770) Copy   


  • RRID:SCR_002793

    This resource has 10+ mentions.

http://www.cognitiveatlas.org/

Knowledge base (or ontology) that characterizes the state of current thought in cognitive science that captures knowledge from users with expertise in psychology, cognitive science, and neuroscience. There are two basic kinds of knowledge in the knowledge base. Terms provide definitions and properties for individual concepts and tasks. Assertions describe relations between terms in the same way that a sentence describes relations between parts of speech. The goal is to develop a knowledge base that will support annotation of data in databases, as well as supporting improved discourse in the community. It is open to all interested researchers. A fundamental feature of the knowledge base is the desire and ability to capture not just agreement but also disagreement regarding definitions and assertions. Thus, if you see a definition or assertion that you disagree with, then you can assert and describe your disagreement. The project is led by Russell Poldrack, Professor of Psychology and Neurobiology at the University of Texas at Austin in collaboration with the UCLA Center for Computational Biology (A. Toga, PI) and UCLA Consortium for Neuropsychiatric Phenomics (R. Bilder, PI). Most tasks used in cognitive psychology research are not identical across different laboratories or even within the same laboratory over time. A major advantage of anchoring cognitive ontologies to the measurement level is that the strategy for determining changes in task properties is easier than tracking changes in concept definitions and usage. The process is easier because task parameters are usually (if not always) operationalized objectively, offering a clear basis to judge divergence in methods. The process is also easier because most tasks are based on prior tasks, and thus can more readily be considered descendants in a phylogenetic sense.

Proper citation: Cognitive Atlas (RRID:SCR_002793) Copy   


http://hnrc.hivresearch.ucsd.edu/

The mission of the HIV Neurobehavioral Research Center (HNRC) is to increase our understanding of how HIV and other diseases affect the human nervous system. The HNRC conducts local, national, and international research devoted to advancing our knowledge of the prevention, diagnosis and treatment of HIV-related diseases as they affect the brain and nervous system, and result in impairment of everyday functioning. Research areas of the Center include: - The incidence, prevalence, and features of neurocognitive impairment caused by HIV - The attributes of the virus, host, and host-virus interactions that determine the presentation of HIV-associated neurocognitive disorders - Possible molecular and cellular mechanisms of nervous system impairment, including the mechanisms by which host-virus factors generate neural injury and neurobehavioral disorders - The cerebrospinal fluid (CSF) as a window on CNS events * The role of co-pathogens and comorbidities in neuroAIDS (e.g., hepatitis C infection, methamphetamine abuse) - Real life implications of neurocognitive impairment in terms of work, daily life, and survival - The effects of HIV disease and neurocognitive impairment on family and social adaptation - NeuroAIDS in resource limited settings - Treatments for neurocognitive impairment and behavioral interventions HNRC also has a Developmental Grants Program (DGP), the primary goal of which is the initiation of innovative studies by junior faculty and trainees at UCSD or affiliated institutions with the following objectives: 1. Recruitment to neuroAIDS research of new investigators or established investigators without prior experience in the field; 2. Generation and pilot testing of new research initiatives; 3. Fostering collaboration among investigators from throughout Southern California. The program provides to qualified investigators and trainees any appropriate combination of the following forms of support: 1. Small, 1-2 year grants to support pilot studies; 2. Access to HNRC core resources such as data, specimens, participants, equipment, administrative support, or expert consultation and technical assistance. Lastly, The the NHRC Mentored Investigator Program recruits, supports, and follows the progress of graduate students, postdoctoral (Ph.D. or M.D.) fellows, and junior faculty in disciplines relevant to HNRC research. The HNRC is committed to tailoring our training opportunities to the backgrounds and interests of candidates from a variety of disciplines who join us with various levels of training and experience in research. We have and will continue to provide training and mentoring of medical students, doctoral students in clinical psychology, and postdoctoral fellows in Medicine, Psychiatry, Neurology, and Psychology. Sponsors: The Center is supported by public funding from the National Institutes of Health, the State of California, and other sources.

Proper citation: HIV Neurobehavioral Research Center (RRID:SCR_005370) Copy   


http://fcon_1000.projects.nitrc.org/

Collection of resting state fMRI (R-fMRI) datasets from sites around world. It demonstrates open sharing of R-fMRI data and aims to emphasize aggregation and sharing of well-phenotyped datasets.

Proper citation: 1000 Functional Connectomes Project (RRID:SCR_005361) Copy   


  • RRID:SCR_005390

    This resource has 10+ mentions.

http://www.med.harvard.edu/AANLIB/

An atlas of normal and abnormal brain images intended as an introduction to basic neuroanatomy, with emphasis on the pathoanatomy of several leading central nervous system diseases that integrates clinical information with magnetic resonance (MR), x-ray computed tomography (CT), and nuclear medicine images. A range of brain abnormalities are presented including examples of certain brain disease presented with various combinations of image type and imaging frequency. Submissions of concise, exemplary, clinically driven examples of neuroimaging are welcome.

Proper citation: Whole Brain Atlas (RRID:SCR_005390) Copy   


  • RRID:SCR_005281

    This resource has 1+ mentions.

http://en.wikibooks.org/wiki/MINC/Atlases

A linear average model atlas produced by the International Consortium for Brain Mapping (ICBM) project. A set of full- brain volumetric images from a normative population specifically for the purposes of generating a model were collected by the Montreal Neurological Institute (MNI), UCLA, and University of Texas Health Science Center at San Antonio Research Imaging Center (RIC). 152 new subjects were scanned using T1, T2 and PD sequences using a specific protocol. These images were acquired at a higher resolution than the original average 305 data and exhibit improved contrast due predominately to advances in imaging technology. Each individual was linearly registered to the average 305 and a new model was formed. In total, three models were created at the MNI, the ICBM152_T1, ICBM152_T2 and ICBM152_PD from 152 normal subjects. This resulting model is now known as the ICBM152 (although the model itself has not been published). One advantage of this model is that it exhibits better contrast and better definition of the top of the brain and the bottom of the cerebellum due to the increased coverage during acquisition. The entirely automatic analysis pipeline of this data also included grey/white matter segmentation via spatial priors. The averaged results of these segmentations formed the first MNI parametric maps of grey and white matter. The maps were never made publicly available in isolation but have formed parts of other packages for some time including SPM, FSL AIR and as models of grey matter for EEG source location in VARETTA and BRAINWAVE. Again, as these models are an approximation of Talairach space, there are differences in varying areas, to continue our use of origin shift as an example, the ICBM models are approximately 152: +3.5mm in Z and +-co-ordinate -3.5mm and 2.0mm in Y as compared to the original Talairach origin. In addition to the standard analysis performed on the ICBM data, 64 of the subjects data were segmented using model based segmentation. 64 of the original 305 were manually outlined and a resulting parametric VOI atlas built. The native data from these acquisitions was 256x256 with 1mm slices. The final image resolution of this data was 181x217x181 with 1mm isotropic voxels. Refer to the ICBM152 NonLinear if you are fitting an individual to model and do not care about left/right comparisons. A short history of the various atlases that have been produced at the BIC (McConnell Brain Imaging Center, Montreal Neurological Institute) is provided.

Proper citation: MINC/Atlases (RRID:SCR_005281) Copy   


  • RRID:SCR_005358

    This resource has 10+ mentions.

http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html#

A grassroots initiative dedicated to accelerating the scientific community''''s understanding of the neural basis of ADHD through the implementation of open data-sharing and discovery-based science. They believe that a community-wide effort focused on advancing functional and structural imaging examinations of the developing brain will accelerate the rate at which neuroscience can inform clinical practice. The ADHD-200 Global Competition invited participants to develop diagnostic classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging (MRI) of the brain. Applying their tools, participants provided diagnostic labels for previously unlabeled datasets. The competition assessed diagnostic accuracy of each submission and invited research papers describing novel, neuroscientific ideas related to ADHD diagnosis. Twenty-one international teams, from a mix of disciplines, including statistics, mathematics, and computer science, submitted diagnostic labels, with some trying their hand at imaging analysis and psychiatric diagnosis for the first time. The data for the competition was provided by the ADHD-200 Consortium. Consortium members from institutions around the world provided de-identified, HIPAA compliant imaging datasets from almost 800 children with and without ADHD. A phenotypic file including all of the test set subjects and their diagnostic codes can be downloaded. Winner is presented. The ADHD-200 consortium included: * Brown University, Providence, RI, USA (Brown) * The Kennedy Krieger Institute, Baltimore, MD, USA (KKI) * The Donders Institute, Nijmegen, The Netherlands (NeuroImage) * New York University Medical Center, New York, NY, USA (NYU) * Oregon Health and Science University, Portland, OR, USA (OHSU) * Peking University, Beijing, P.R.China (Peking 1-3) * The University of Pittsburgh, Pittsburgh, PA, USA (Pittsburgh) * Washington University in St. Louis, St. Louis, MO, USA (WashU)

Proper citation: ADHD-200 Sample (RRID:SCR_005358) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X