Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 469 results
Snippet view Table view Download 469 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005587

    This resource has 1+ mentions.

http://mesquiteproject.org/packages/chromaseq/

A software package in Mesquite that processes chromatograms, makes contigs, base calls, etc., using in part the programs Phred and Phrap.

Proper citation: Chromaseq (RRID:SCR_005587) Copy   


http://great.stanford.edu/public/html/splash.php

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy   


  • RRID:SCR_005787

    This resource has 1+ mentions.

http://umbbd.msi.umn.edu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2014. Database containing information on microbial biocatalytic reactions and biodegradation pathways for primarily xenobiotic, chemical compounds. Its goal is to provide information on microbial enzyme-catalyzed reactions that are important for biotechnology. The reactions covered are studied for basic understanding of nature, biocatalysis leading to specialty chemical manufacture, and biodegradation of environmental pollutants. Individual reactions and metabolic pathways are presented with information on the starting and intermediate chemical compounds, the organisms that transform the compounds, the enzymes, and the genes. The present database has been successfully used to teach enzymology and use of biochemical Internet information resources to advanced undergraduate and graduate students, and is being expanded primarily with the help of such students. In addition to reactions and pathways, this database also contains Biochemical Periodic Tables and a Pathway Prediction System. * Search the UM-BBD for compound, enzyme, microorganism, pathway, or BT rule name; chemical formula; chemical structure; CAS Registry Number; or EC code. * Go to Pathways and Metapathways in the UM-BBD * Lists of 203 pathways; 1400 reactions; 1296 compounds; 916 enzymes; 510 microorganism entries; 245 biotransformation rules; 50 organic functional groups; 76 reactions of naphthalene 1,2-dioxygenase; 109 reactions of toluene dioxygenase; Graphical UM-BBD Overview; and Other Graphics (Metapathway and Pathway Maps and Reaction Mechanisms).

Proper citation: UM-BBD (RRID:SCR_005787) Copy   


  • RRID:SCR_005780

    This resource has 10000+ mentions.

Ratings or validation data are available for this resource

http://genome.ucsc.edu/

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy   


  • RRID:SCR_005781

http://pmgn.vbi.vt.edu

The Oomycete Molecular Genetics Research Collaboration Network (OMGN) is a network for research collaboration for investigators interested in oomycete molecular genetics and genomics. The goals of the OMGN is to facilitate the integration of these investigators into the community and to further strengthen the cooperative culture of this community. A particular emphasis is placed on training and integrating junior faculty and faculty from institutions under-represented in the U.S. research infrastructure. Because of their economic impact as plant pathogens, molecular, genetic and genomics studies are well advanced in many oomycete species. These organisms have served as lead species for the entire Stramenopiles lineage, a major radiation of crown eukaryotes, distinct from plants, animals and fungi. The oomycete molecular genetics community has a strong culture of collaboration and communication, and sharing of techniques and resources. With the recent blossoming of genetic and genomic tools for oomycetes, many new investigators, from a variety of backgrounds, have become interested in oomycete molecular genetics and genomics. The proposed network is open to all researchers with an interest in oomycete molecular genetics and genomics, either at an experimental or a computational level. Investigators new to the field are always welcome, especially those interested in saprophytes and animal pathogens. Goals of OMGN # Provide training to o��mycete molecular genetics researchers, especially those from smaller institutions, in the use of bioinformatics and genomics resources. # Promote the entry, participation and training of new investigators into the field of o��mycete genomics, particularly junior faculty and faculty from institutions under-represented in the U.S. research infrastructure. # Promote communication and collaboration, and minimize duplication of effort, within the worldwide o��mycete genomics community. # Support an O��mycete Genomics Resources Center to maintain and distribute training and research materials produced by community genomics projects. The network''s activities have been supported by two grants from the NSF Research Collaboration Networks in Biology program.

Proper citation: OMGN (RRID:SCR_005781) Copy   


http://www.iedadata.org/

A community-based data facility to support, sustain, and advance the geosciences by providing data services for observational solid earth data from the Ocean, Earth, and Polar Sciences. IEDA systems enable these data to be discovered and reused by a diverse community now and in the future. Data services include data access, data analysis, data compliance, data publication, DOI search, and web services. Desktop apps GeoMapApp and Virtual Ocean are available to explore, visualize and analyze your own data within the context of hundreds of other earth science data from around the world. IEDA is a partnership between EarthChem and the Marine Geoscience Data System (MGDS). EarthChem and MGDS systems include the geochemical databases PetDB and SedDB, the geochemistry data network EarthChem, the Ridge2000 and MARGINS Data Portals, the Academic Seismic Portal field data collection, the Antarctic and Southern Ocean Data System, the Global Multi Resolution Topography synthesis, and the System for Earth Sample Registration SESAR.

Proper citation: Integrated Earth Data Applications (RRID:SCR_006739) Copy   


http://redfly.ccr.buffalo.edu

Curated collection of known Drosophila transcriptional cis-regulatory modules (CRMs) and transcription factor binding sites (TFBSs). Includes experimentally verified fly regulatory elements along with their DNA sequence, associated genes, and expression patterns they direct. Submission of experimentally verified cis-regulatory elements that are not included in REDfly database are welcome.

Proper citation: REDfly Regulatory Element Database for Drosophilia (RRID:SCR_006790) Copy   


http://www.openarchives.org/ore/

Initiative which defines standards for the description and exchange of aggregations of Web resources. The intent of the effort is to develop standards that generalize across all web-based information including the increasing popular social networks of web 2.0. The goal of these standards is to expose the rich content in these aggregations (sometimes called compound digital objects, they may combine distributed resources with multiple media types including text, images, data, and video) to applications that support authoring, deposit, exchange, visualization, reuse, and preservation. The specific aim of the ORE effort is to promote (through creation or endorsement) effective and consistent mechanisms which: facilitate discovery of compound digital objects; reference (or link to) these objects (as well as parts thereof); obtain a variety of disseminations of these objects; aggregate and disaggregate objects; and enable processing of objects by automated agents.

Proper citation: Open Archives Initiative - Object Reuse and Exchange Initiative (RRID:SCR_006982) Copy   


http://smallrna.udel.edu/index.php

This project has developed a sequence dataset of plant small RNAs based on the hypothesis that most if not all plants utilize important small RNA signaling networks. Different plant families are likely to have both common and lineage-specific miRNAs or other small RNAs with important biological roles. Comparative genomics approaches can be applied to distinguish potential miRNAs from siRNAs and to match the miRNAs to the target sequences. This project develops an unparalleled resource of millions of plant small RNAs for comparative analyses. The project includes sequencing of small RNAs from a diverse and agronomically-relevant set of plant species, focused analyses of important members of the Solanaceae and Poaceae, and development of a small RNA database and web interface for public access and analysis of data. These data will allow the experimental characterization of the majority of biologically important small RNAs for a range of plant species, and will be tremendously useful to a broad set of plant biologists interested in development, stress responses, epigenetics, evolution, RNA biology and other traits impacted by small RNAs. We offer a variety of tools to query the small RNA data set, with options to identify sequences based on homology, expression levels, conservation, or potential function: 1. Small RNA mapping tool: searches for small RNAs perfectly matching a genomic sequence provided by the user. 2. Small RNA mismatch tool: searches the database for small RNAs or other short sequences provided by the user, allowing mismatches. 3. Library-comparison tool to identify conserved small RNAs. 4. Library-comparison tool to identify differentially regulated small RNAs. 5. Reverse Target Prediction.

Proper citation: Comparative Sequencing of Plant Small RNAs (RRID:SCR_007003) Copy   


  • RRID:SCR_007143

    This resource has 1+ mentions.

http://hendrix.imm.dtu.dk/software/lyngby/

Matlab toolbox for the analysis of functional neuroimages (PET, fMRI). The toolbox contains a number of models: FIR-filter, Lange-Zeger, K-means clustering among others, visualizations and reading of neuroimaging files.

Proper citation: Lyngby (RRID:SCR_007143) Copy   


http://earthref.org/MAGIC/

Databases that accept and provide access to paleomagnetic and rock magnetic data. The paleomagnetic data range from individual measurements to specimen, sample or site level results, including a wide variety of derived parameters or associated rock magnetic measurements. The rock magnetic database includes data collected during rock magnetic experiments on remanence, anisotropy, hysteresis and susceptibility. The MagIC Console Software provides an effective environment in Microsoft Excel where users can collate and prepare their paleomagentic and rock magnetic data for uploading in the Online MagIC Database.

Proper citation: Magnetics Information Consortium (RRID:SCR_007098) Copy   


http://www.genes2cognition.org/

A neuroscience research program that studies genes, the brain and behavior in an integrated manner, established to elucidate the molecular mechanisms of learning and memory, and shed light on the pathogenesis of disorders of cognition. Central to G2C investigations is the NMDA receptor complex (NRC/MASC), that is found at the synapses in the central nervous system which constitute the functional connections between neurons. Changes in the receptor and associated components are thought to be in a large part responsible for the phenomenon of synaptic plasticity, that may underlie learning and memory. G2C is addressing the function of synapse proteins using large scale approaches combining genomics, proteomics and genetic methods with electrophysiological and behavioral studies. This is incorporated with computational models of the organization of molecular networks at the synapse. These combined approaches provide a powerful and unique opportunity to understand the mechanisms of disease genes in behavior and brain pathology as well as provide fundamental insights into the complexity of the human brain. Additionally, Genes to Cognition makes available its biological resources, including gene-targeting vectors, ES cell lines, antibodies, and transgenic mice, generated for its phenotyping pipeline. The resources are freely-available to interested researchers.

Proper citation: Genes to Cognition: Neuroscience Research Programme (RRID:SCR_007121) Copy   


  • RRID:SCR_007278

    This resource has 10+ mentions.

https://www.nitrc.org/projects/fmridatacenter/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 25, 2013 Public curated repository of peer reviewed fMRI studies and their underlying data. This Web-accessible database has data mining capabilities and the means to deliver requested data to the user (via Web, CD, or digital tape). Datasets available: 107 NOTE: The fMRIDC is down temporarily while it moves to a new home at UCLA. Check back again in late Jan 2013! The goal of the Center is to help speed the progress and the understanding of cognitive processes and the neural substrates that underlie them by: * Providing a publicly accessible repository of peer-reviewed fMRI studies. * Providing all data necessary to interpret, analyze, and replicate these fMRI studies. * Provide training for both the academic and professional communities. The Center will accept data from those researchers who are publishing fMRI imaging articles in peer-reviewed journals. The goal is to serve the entire fMRI community.

Proper citation: fMRI Data Center (RRID:SCR_007278) Copy   


  • RRID:SCR_007379

    This resource has 1+ mentions.

http://nsr.bioeng.washington.edu/

Database of physiological, pharmacological, and pathological information on humans and other organisms and integration through computational modeling. Models include everything from diagrammatic schema, suggesting relationships among elements composing a system, to fully quantitative, computational models describing the behavior of physiological systems and an organism''s response to environmental change. Each mathematical model is an internally self-consistent summary of available information, and thereby defines a working hypothesis about how a system operates. Predictions from such models are subject to test, with new results leading to new models.BR /> A Tool developed for the NSR Physiome project is JSim, an open source, free software. JSim is a Java-based simulation system for building quantitative numeric models and analyzing them with respect to experimental reference data. JSim''s primary focus is in physiology and biomedicine, however its computational engine is quite general and applicable to a wide range of scientific domains. JSim models may intermix ODEs, PDEs, implicit equations, integrals, summations, discrete events and procedural code as appropriate. JSim''s model compiler can automatically insert conversion factors for compatible physical units as well as detect and reject unit unbalanced equations. JSim also imports the SBML and CellML model archival formats. All JSim models are open source. Goals of the Physiome Project: - To develop and database observations of physiological phenomenon and interpret these in terms of mechanism (a fundamentally reductionist goal). - To integrate experimental information into quantitative descriptions of the functioning of humans and other organisms (modern integrative biology glued together via modeling). - To disseminate experimental data and integrative models for teaching and research. - To foster collaboration amongst investigators worldwide, to speed up the discovery of how biological systems work. - To determine the most effective targets (molecules or systems) for therapy, either pharmaceutic or genomic. - To provide information for the design of tissue-engineered, biocompatible implants.

Proper citation: NSR Physiome Project (RRID:SCR_007379) Copy   


  • RRID:SCR_007874

    This resource has 50+ mentions.

http://cagt.bu.edu/page/PRECISE_about

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 12,2023. Database of interactions between amino acid residues of enzyme and its ligands. Provides summary of interactions between amino acid residues of enzyme and its various ligands including substrate and transition state analogues, cofactors, inhibitors, and products., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: PRECISE (RRID:SCR_007874) Copy   


  • RRID:SCR_008109

    This resource has 50+ mentions.

https://plantcyc.org/databases/aracyc/15.0

Curated species-specific database present at the Plant Metabolic Network. It has a large number of experimentally supported enzymes and metabolic pathways, but it also houses a substantial number of computationally predicted enzymes and pathways.

Proper citation: AraCyc (RRID:SCR_008109) Copy   


  • RRID:SCR_008053

    This resource has 1+ mentions.

http://openwetware.org/wiki/Main_Page

OpenWetWare is an effort to promote the sharing of information, know-how, and wisdom among researchers and groups who are working in biology & biological engineering. OWW provides a place for labs, individuals, and groups to organize their own information and collaborate with others easily and efficiently. In the process, the hope is that OWW will not only lead to greater collaboration between member groups, but also provide a useful information portal to our colleagues, and ultimately the rest of the world. OWW''s approaches to achieve their goals: # Lower the technical barriers to sharing and dissemination of knowledge in biological research # Build a community of researchers in biology and biological engineering that values, practices, and innovates the open sharing of information # Integrate OpenWetWare into existing and future reward structures in research

Proper citation: OpenWetWare (RRID:SCR_008053) Copy   


  • RRID:SCR_008238

    This resource has 1+ mentions.

http://www.reciprocalnet.org/

Database of crystallographic information. Its membership includes crystallographic service facilities (that analyze crystals submitted by research chemists) located at major universities. These labs analyze anywhere from a few dozen to several hundred molecular structures each year and post the data online for the public to access. A distributed database engine takes care of shuttling this data across the Internet so that every structure can be located by the search engine. There may be a delay of a year or more between the time a structure is first analyzed and the time it finally becomes available for the public to see. This is due to intellectual property issues - the intervening time allows the chemists who first discovered the structure to publish it in a trade journal.

Proper citation: Reciprocal Net (RRID:SCR_008238) Copy   


http://connectomes.utah.edu/

A web-compliant application that allows connectomics visualization by converting datasets to web-optimized tiles, delivering volume transforms to client devices, and providing groups of users with connectome annotation tools and data simultaneously via conventional internet connections. Viking is an extensible tool for connectomics analysis and is generalizable to histomics applications.

Proper citation: Viking Viewer for Connectomics (RRID:SCR_005986) Copy   


  • RRID:SCR_006244

    This resource has 1000+ mentions.

http://evolution.genetics.washington.edu/phylip.html

A free package of software programs for inferring phylogenies (evolutionary trees). The source code is distributed (in C), and executables are also distributed. In particular, already-compiled executables are available for Windows (95/98/NT/2000/me/xp/Vista), Mac OS X, and Linux systems. Older executables are also available for Mac OS 8 or 9 systems.

Proper citation: PHYLIP (RRID:SCR_006244) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X