Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://bioinformatics.biol.uoa.gr/PRED-TMBB/
A web tool, based on a Hidden Markov Model, capable of predicting the transmembrane beta-strands of the gram-negative bacteria outer membrane proteins, and of discriminating such proteins from water-soluble ones when screening large datasets. The model is trained in a discriminative manner, aiming at maximizing the probability of the correct prediction rather than the likelihood of the sequences. The training is performed on a non-redundant database consisting of 16 outer membrane proteins (OMP''s) with their structures known at atomic resolution. We show that we can achieve predictions at least as good comparing with other existing methods, using as input only the amino-acid sequence, without the need of evolutionary information included in multiple alignments. The method is also powerful when used for discrimination purposes, as it can discriminate with a high accuracy the outer membrane proteins from water soluble in large datasets, making it a quite reliable solution for screening entire genomes. This web-server can help you run a discriminating process on any amino-acid sequence and thereafter localize the transmembrane strands and find the topology of the loops.
Proper citation: PRED-TMBB (RRID:SCR_006190) Copy
A database and interactive web site for manipulating and displaying annotations on genomes. Features include: detailed views of the genome; use of a variety of premade or personally made glyphs ; customizable order and appearance of tracks by administrators and end-users; search by annotation ID, name, or comment; support of third party annotation using GFF formats; DNA and GFF dumps; connectivity to different databases, including BioSQL and Chado; and a customizable plug-in architecture (e.g. run BLAST, find oligonucleotides, design primers, etc.). GBrowse is distributed as source code for Macintosh OS X, UNIX and Linux platforms, and as pre-packaged binaries for Windows machines. It can be installed using the standard Perl module build procedure, or automated using a network-based install script. In order to use the net installer, you will need to have Perl 5.8.6 or higher and the Apache web server installed. The wiki portion accepts data submissions.
Proper citation: GBrowse (RRID:SCR_006829) Copy
http://biobases.ibch.poznan.pl/5SData/
A database on nucleotide sequences of 5S rRNAs and their genes. The database contains 1985 primary structures of 5S rRNA and 5S rDNA, and was last updated in 2002, according to the website. They include 60 archaebacterial, 470 eubacterial, 63 plastid, nine mitochondrial and 1383 eukaryotic sequences. The nucleotide sequences of the 5S rRNAs or 5S rDNAs are divided according to the taxonomic position of the source organisms. The sequences for particular organisms can be retrieved as single files using a taxonomic browser or in multiple sequence structural alignments. The multiple sequence alignments of 5S ribosomal RNAs can be downloaded in TAB-delimited and FASTA formats.
Proper citation: 5S Ribosomal RNA Database (RRID:SCR_007545) Copy
http://amphoranet.pitgroup.org/
Webserver implementation of the AMPHORA2 workflow for phylogenetic analysis of metagenomic shotgun sequencing data. It is capable of assigning a probability-weighted taxonomic group for each phylogenetic marker gene found in the input metagenomic sample.
Proper citation: AmphoraNet (RRID:SCR_005009) Copy
A knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
Proper citation: BiGG Database (RRID:SCR_005809) Copy
http://www.hpppi.iicb.res.in/btox/
Database of Bacterial ExoToxins for Human is a database of sequences, structures, interaction networks and analytical results for 229 exotoxins, from 26 different human pathogenic bacterial genus. All toxins are classified into 24 different Toxin classes. The aim of DBETH is to provide a comprehensive database for human pathogenic bacterial exotoxins. DBETH also provides a platform to its users to identify potential exotoxin like sequences through Homology based as well as Non-homology based methods. In homology based approach the users can identify potential exotoxin like sequences either running BLASTp against the toxin sequences or by running HMMER against toxin domains identified by DBETH from human pathogenic bacterial exotoxins. In Non-homology based part DBETH uses a machine learning approach to identify potential exotoxins (Toxin Prediction by Support Vector Machine based approach).
Proper citation: DBETH - Database for Bacterial ExoToxins for Humans (RRID:SCR_005908) Copy
http://pallab.serc.iisc.ernet.in/gester/
Database of intrinsic terminators of transcription that is comprized of >2,200,000 bacterial terminators identified from a total of 2036 chromosomes and 1508 plasmids. Information about structural parameters of individual terminators such as sequence, length of stem and loop, mismatches and gaps, U-trail, genomic coordinates and gene name and accession number is available in both tabular form and as a composite figure. Summary statistics for terminator profiles of whole genome can be also obtained. Raw data files for individual genomes can be downloaded (.zip files) for detailed investigations. Data is organized into different tiers such that users can fine-tune their search by entering name of the species, or taxon ID or genomes with a certain number of terminators. To visualize the occurrence of the terminators, an interactive map, with the resolution to single gene level, has been developed.
Proper citation: WebGeSTer DB (RRID:SCR_002165) Copy
https://enigma.lbl.gov/regprecise/
Collection of manually curated inferences of regulons in prokaryotic genomes. Database for capturing, visualization and analysis of transcription factor regulons that were reconstructed by comparative genomic approach in wide variety of prokaryotic genomes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: RegPrecise (RRID:SCR_002149) Copy
http://www.ncbi.nlm.nih.gov/RefSeq/
Collection of curated, non-redundant genomic DNA, transcript RNA, and protein sequences produced by NCBI. Provides a reference for genome annotation, gene identification and characterization, mutation and polymorphism analysis, expression studies, and comparative analyses. Accessed through the Nucleotide and Protein databases.
Proper citation: RefSeq (RRID:SCR_003496) Copy
http://www.ncbi.nlm.nih.gov/taxonomy/
Database for a curated classification and nomenclature that contains the names of all organisms that are represented in the public sequence databases with at least one nucleotide or protein sequence. Data provided encompasses archaea, bacteria, eukaryota, viroids and viruses. The NCBI taxonomy database is not a primary source for taxonomic or phylogenetic information. Furthermore, the database does not follow a single taxonomic treatise but rather attempts to incorporate phylogenetic and taxonomic knowledge from a variety of sources, including the published literature, web-based databases, and the advice of sequence submitters and outside taxonomy experts. Consequently, the NCBI taxonomy database is not a phylogenetic or taxonomic authority and should not be cited as such.
Proper citation: NCBI Taxonomy (RRID:SCR_003256) Copy
Database that catalogs experimentally verified pathogenicity, virulence and effector genes from fungal, Oomycete and bacterial pathogens, which infect animal, plant, fungal and insect hosts. It is an invaluable resource in the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. In collaboration with the FRAC team, it also includes antifungal compounds and their target genes. Each entry is curated by domain experts and is supported by strong experimental evidence (gene disruption experiments, STM etc), as well as literature references in which the original experiments are described. Each gene is presented with its nucleotide and deduced amino acid sequence, as well as a detailed description of the predicted protein's function during the host infection process. To facilitate data interoperability, genes have been annotated using controlled vocabularies and links to external sources (Gene Ontology terms, EC Numbers, NCBI taxonomy, EMBL, PubMed and FRAC).
Proper citation: PHI-base (RRID:SCR_003331) Copy
Database of orthologous protein coding genes across vertebrates, arthropods, fungi, basal metazoans, and bacteria.
Proper citation: OrthoDB (RRID:SCR_011980) Copy
http://depts.washington.edu/cfrtc/microbiology/
Core facility which provides tools, reagents, and training for microbiological researchers investigating cystic fibrosis. They specifically provide resources for research in anti-bacterial therapies,
Proper citation: Cystic Fibrosis Center - University of Washington Microbiology Core (RRID:SCR_015403) Copy
Database lists names of prokaryotes that have been validly published in International Journal of Systematic and Evolutionary Microbiology directly or by inclusion in Validation List, under Rules of International Code of Nomenclature of Bacteria. Has classification of prokaryotes and information on prokaryotic nomenclature and culture collections.
Proper citation: LPSN Database (RRID:SCR_018151) Copy
http://csdb.glycoscience.ru/database/
Database contains manually curated natural carbohydrate structures, taxonomy, bibliography, NMR data. Bacterial and Plant and Fungal databases were merged to improve quality of content-dependent services, such as taxon clustering or NMR simulation. These separate databases will be supported in parallel until 2020.
Proper citation: Carbohydrate Structure Database (RRID:SCR_018684) Copy
http://www.addgene.org/vector-database/
Vector database is a digital collection of vector backbones assembled from publications and commercially available sources. This is a free resource for the scientific community that is compiled by Addgene. Only the plasmids deposited at Addgene are available for purchase through this website.
Proper citation: Vector Database (RRID:SCR_005907) Copy
http://www.brc.riken.jp/inf/en
RIKEN BRC contributes to advancement of life science research by collecting, preserving and distributing biological resources such as experimental animals, experimental plants, cultured cell lines, genetic materials (DNA), and associated bioinformatics. The RIKEN BRC develops novel bioresources to promote scientific research and new technologies to increase the value of bioresources, and also to implement effective procedures for the preservation, quality control and usage of bioresources. The RIKEN BRC is working closely with institutions in Japan and abroad.
Proper citation: RIKEN BioResource Center (RRID:SCR_003250) Copy
http://iimcb.genesilico.pl/MetaLocGramN/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 5, 2023.A tool for subcellular localization prediction of Gram-negative proteins. You can also use MetaGramLocN via SOAP. SOAP enables you to invoke our method from scripts written in your programming language of choice.
Proper citation: MetaLocGramN (RRID:SCR_003154) Copy
Portal providing access to all JGI genomic databases and analytical tools, sequencing projects and their status, search for and download assemblies and annotations of sequenced genomes, and interactively explore those genomes and compare them with other sequenced microbes, fungi, plants or metagenomes using specialized systems tailored to each particular class of organisms. The Department of Energy (DOE) Joint Genome Institute (JGI) is a national user facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing genomics for bioenergy and environmental applications. Beyond generating tens of trillions of DNA bases annually, the Institute develops and maintains data management systems and specialized analytical capabilities to manage and interpret complex genomic data sets, and to enable an expanding community of users around the world to analyze these data in different contexts over the web.
Proper citation: JGI Genome Portal (RRID:SCR_002383) Copy
http://genomics1.mh-hannover.de/genometa/index.php?Site=Home
A Java based bioinformatics program which allows rapid analysis of metagenomic short read datasets. Millions of short reads can be accurately analysed within minutes and visualised in the browser component. A large database of diverse bacteria and archaea has been constructed as a reference sequence. The approach is based upon the established open source visualisation tool IGB and supported by the rapid alignment program bowtie. The Picard toolset for SAM files is also made use of.
Proper citation: Genometa (RRID:SCR_001181) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.