Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 795 results
Snippet view Table view Download 795 Result(s)
Click the to add this resource to a Collection

http://www.angis.org.au/Databases/Heart/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The aim of this locus-specific mutation database was to provide an online resource that contains summarized and updated information on familial hypertrophic cardiomyopathy (FHC)-associated mutations and related data, for researchers and clinicians. It also serves as a means of publishing previously unpublished data, which could be of value in understanding genotype/phenotype correlations. This database contains mutations in various genes known to cause familial hypertrophic cardiomyopathy, a genetic disorder associated with defects in the sarcomere [1]. Only gene symbols approved by HUGO are used and mutations are reported in accordance with guidelines recommended by the Mutation Database Initiative of HUGO and EBI.

Proper citation: Familial Hypertrophic Cardiomyopathy DNA Mutation Database (RRID:SCR_002346) Copy   


http://dirline.nlm.nih.gov/

THIS RESOURCE IS NO LONGER IN SERVICE, documented July 15, 2016. Database containing location and descriptive information about a wide variety of information resources including organizations, research resources, projects, and databases concerned with health and biomedicine. This information may not be readily available in bibliographic databases. Each record may contain information on the publications, holdings, and services provided. These information resources fall into many categories including federal, state, and local government agencies; information and referral centers; professional societies; self-help groups and voluntary associations; academic and research institutions and their programs; information systems and research facilities. Topics include HIV/AIDS, maternal and child health, most diseases and conditions including genetic and other rare diseases, health services research and technology assessment. DIRLINE can be searched using subject words (such as disease or condition) including Medical Subject Headings (MeSH) or for the name or location of a resource. It now offers an A to Z list of over 8,500 organizations.

Proper citation: Directory of Health Organizations Online (RRID:SCR_002331) Copy   


  • RRID:SCR_002332

http://www.dogmap.ch/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. An international collaboration between 46 labs from 20 different countries towards a low resolution canine marker map under the auspices of the International Society for Animal Genetics (ISAG). The map under development should achieve a resolution of about 20 cM and some of the markers should be mapped physically. The participants have agreed to use microsatellites as markers on a common panel of reference families which will provide the backbone of the marker map. It is foreseen to also include type I markers in the mapping effort and to produce cosmid derived microsatellites for physical mapping. For this purpose part of the effort focuses on the standardization of the canine karyotype. Special attention is payed to hereditary diseases where efforts are under way to establish resource families either by collecting families or by specific breeding. A point of emphasis of the DogMap project is the setting up of an internationally accessible database for handling the mapping data. The structure of the DogMap collaboration includes a managing committee and scientific advisers. The managing committee is responsible for the overall coordination of the activities within the collaboration, for the dissemination of relevant information to all of the participants and for the representation of DogMap outside the collaboration., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: DogMap (RRID:SCR_002332) Copy   


  • RRID:SCR_002821

    This resource has 10+ mentions.

http://kb.phenoscape.org/

Knowledgebase that uses ontologies to integrate phenotypic data from genetic studies of zebrafish with evolutionary variable phenotypes from the systematic literature of ostariophysan fishes. Users can explore the data by searching for anatomical terms, taxa, or gene names. The expert system enables the broad scale analysis of phenotypic variation across taxa and the co-analysis of these evolutionarily variable features with the phenotypic mutants of model organisms. The Knowledgebase currently contains 565,158 phenotype statements about 2,527 taxa, sourced from 57 publications, as well as 38,189 phenotype statements about 4,727 genes, retrieved from ZFIN. 2013-01-26.

Proper citation: Phenoscape Knowledgebase (RRID:SCR_002821) Copy   


http://www.oege.org/

Portal for researchers to locate information relevant to interpretation and follow-up of human genetic epidemiological discoveries, including: a range of population and case and family genetic epidemiological studies, relevant gene and sequence databases, genetic variation databases, trait measurement, resource labs, journals, software, general information, disease genes and genetic diversity.

Proper citation: Online Encyclopedia for Genetic Epidemiology studies (RRID:SCR_001825) Copy   


  • RRID:SCR_007079

    This resource has 1+ mentions.

http://www.genoscope.cns.fr/externe/tetraodon/

The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.

Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy   


https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page

A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.

Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy   


  • RRID:SCR_007248

    This resource has 1+ mentions.

http://cardiogenomica.altervista.org/CARDIOGENOMICS/CardioGenomics%20Homepage.htm

The primary goal of the CardioGenomics PGA is to begin to link genes to structure, function, dysfunction and structural abnormalities of the cardiovascular system caused by clinically relevant genetic and environmental stimuli. The principal biological theme to be pursued is how the transcriptional network of the cardiovascular system responds to genetic and environmental stresses to maintain normal function and structure, and how this network is altered in disease. This PGA will generate a high quality, comprehensive data set for the functional genomics of structural and functional adaptation of the cardiovascular system by integrating expression data from animal models and human tissue samples, mutation screening of candidate genes in patients, and DNA polymorphisms in a well characterized general population. Such a data set will serve as a benchmark for future basic, clinical, and pharmacogenomic studies. Training and education are also a key focus of the CardioGenomics PGA. In addition to ongoing journal clubs and seminars, the PGA will be sponsoring symposia at major conferences, and developing workshops related to the areas of focus of this PGA. Information regarding upcoming events can be found in the Events section of this site, and information about training and education opportunities sponsored by CardioGenomics can be found on the Teaching and Education page. The CardioGenomics project came to a close in 2005. This server, cardiogenomics.med.harvard.edu, remains online in order to continue to distribute data that was generated by investigators under the auspices of the CardioGenomics Program for Genomic Applications (PGA). :Sponsors: This resource is supported by The National Heart, Lung and Blood Institute (NHLBI) of the NIH., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: CardioGenomics (RRID:SCR_007248) Copy   


  • RRID:SCR_008154

    This resource has 1+ mentions.

http://ncv.unl.edu/Angelettilab/HPV/Database.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.

Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy   


http://www.animalgenome.org/pigs/nagrp.html

Database and resources on the pig genome.

Proper citation: U.S. Pig Genome Project (RRID:SCR_008151) Copy   


  • RRID:SCR_008445

    This resource has 10+ mentions.

http://cgems.cancer.gov

The project began as a pilot study to identify inherited genetic susceptibility to prostate and breast cancer. CGEMS has developed into a robust research program involving genome-wide association studies (GWASs) for a number of cancers to identify common genetic variants that affect a person''s risk of developing cancer. In collaboration with extramural scientists, NCI''s Division of Cancer Epidemiology and Genetics (DCEG) has carried out genome-wide scans for breast, prostate, pancreatic, and lung cancers, while a GWAS of bladder cancer is currently underway. By making the data available to both intramural and extramural research scientists, as well as those in the private sector through rapid posting, NIH can leverage its resources to ensure that the dramatic advances in genomics are incorporated into rigorous population-based studies. Ultimately, findings from these studies may yield new preventive, diagnostic, and therapeutic interventions for cancer. Sponsors: This resource is supported by the U.S. National Institues Of Health.

Proper citation: CGEMS (RRID:SCR_008445) Copy   


http://www.snprc.org/

Center that supports studies of nonhuman primate models of human diseases, including common chronic diseases and infectious diseases and the effects that genetics and the environment have on physiological processes and disease susceptibility. SNPRC encourages the use of its resources by investigators from the national and international biomedical research communities.

Proper citation: Southwest National Primate Research Center (RRID:SCR_008292) Copy   


https://code.google.com/p/ontology-for-genetic-interval/

An ontology that formalized the genomic element by defining an upper class genetic interval using BFO as its framework. The definition of genetic interval is the spatial continuous physical entity which contains ordered genomic sets (DNA, RNA, Allele, Marker,etc.) between and including two points (Nucleic_Acid_Base_Residue) on a chromosome or RNA molecule which must have a liner primary sequence structure.

Proper citation: Ontology for Genetic Interval (RRID:SCR_003423) Copy   


  • RRID:SCR_000919

http://www.pcr-blog.com/

A blog that contains reviews and information on PCR methods, applications and technology. Topics include tips and advice, troubleshooting, optimization and up-to-date information on the polymerase chain reaction.

Proper citation: PCR Blog (RRID:SCR_000919) Copy   


  • RRID:SCR_007260

    This resource has 100+ mentions.

http://www.alspac.bris.ac.uk

A long-term health research project which follows pregnant women and their offspring in a continuous health and developmental study. More than 14,000 mothers enrolled during pregnancy in 1991 and 1992, and the health and development of their children has been followed in great detail. The ALSPAC families have provided a vast amount of genetic and environmental information over the years which can be made available to researchers globally.

Proper citation: ALSPAC (RRID:SCR_007260) Copy   


  • RRID:SCR_001251

    This resource has 10+ mentions.

http://www.bioconductor.org/packages/release/bioc/html/CGEN.html

Software R package for analysis of case-control studies in genetic epidemiology.

Proper citation: CGEN (RRID:SCR_001251) Copy   


  • RRID:SCR_001378

    This resource has 1+ mentions.

http://www.morpholinodatabase.org/

Central database to house data on morpholino screens currently containing over 700 morpholinos including control and multiple morpholinos against the same target. A publicly accessible sequence-based search opens this database for morpholinos against a particular target for the zebrafish community. Morpholino Screens: They set out to identify all cotranslationally translocated genes in the zebrafish genome (Secretome/CTT-ome). Morpholinos were designed against putative secreted/CTT targets and injected into 1-4 cell stage zebrafish embryos. The embryos were observed over a 5 day period for defects in several different systems. The first screen examined 184 gene targets of which 26 demonstrated defects of interest (Pickart et al. 2006). A collaboration with the Verfaillie laboratory examined the knockdown of targets identified in a comparative microarray analysis of hematopoietic stem cells demonstrating how microarray and morpholino technologies can be used in conjunction to enrich for defects in specific developmental processes. Currently, many collaborations are underway to identify genes involved in morphological, kidney, skin, eye, pigment, vascular and hematopoietic development, lipid metabolism and more. The screen types referred to in the search functions are the specific areas of development that were examined during the various screens, which include behavior, general morphology, pigmentation, toxicity, Pax2 expression, and development of the craniofacial structures, eyes, kidneys, pituitary, and skin. Only data pertaining to specific tests performed are presented. Due to the complexity of this international collaboration and time constraints, not all morpholinos were subjected to all screen types. They are currently expanding public access to the database. In the future we will provide: * Mortality curves and dose range for each morpholino * Preliminary data regarding the effectiveness of each morpholino * Expanded annotation for each morpholino * External linkage of our morpholino sequences to ZFIN and Ensembl. To submit morpholino-knockdown results to MODB please contact the administrator for a user name and password.

Proper citation: Morpholino Database (RRID:SCR_001378) Copy   


http://www.genome.jp/kegg/expression/

Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.

Proper citation: Kyoto Encyclopedia of Genes and Genomes Expression Database (RRID:SCR_001120) Copy   


  • RRID:SCR_001395

    This resource has 10+ mentions.

http://www.well.ox.ac.uk/happy/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package for Multipoint QTL Mapping in Genetically Heterogeneous Animals (entry from Genetic Analysis Software) The method is implemented in a C-program and there is now an R version of HAPPY. You can run HAPPY remotely from their web server using your own data (or try it out on the data provided for download).

Proper citation: Happy (RRID:SCR_001395) Copy   


  • RRID:SCR_001587

http://neuronalarchitects.com/ibiofind.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 17, 2016. C#.NET 4.0 WPF / OWL / REST / JSON / SPARQL multi-threaded, parallel desktop application enables the construction of biomedical knowledge through PubMed, ScienceDirect, EndNote and NIH Grant repositories for tracking the work of medical researchers for ranking and recommendations. Users can crawl web sites, build latent semantic indices to generate literature searches for both Clinical Translation Science Award and non-CTSA institutions, examine publications, build Bayesian networks for neural correlates, gene to gene interactions, protein to protein interactions and as well drug treatment hypotheses. Furthermore, one can easily access potential researcher information, monitor and evolve their networks and search for possible collaborators and software tools for creating biomedical informatics products. The application is designed to work with the ModelMaker, R, Neural Maestro, Lucene, EndNote and MindGenius applications to improve the quality and quantity of medical research. iBIOFind interfaces with both eNeoTutor and ModelMaker 2013 Web Services Implementation in .NET for eNeoTutor to aid instructors to build neuroscience courses as well as rare diseases. Added: Rare Disease Explorer: The Visualization of Rare Disease, Gene and Protein Networks application module. Cinematics for the Image Finder from Yale. The ability to automatically generate and update websites for rare diseases. Cytoscape integration for the construction and visualization of pathways for Molecular targets of Model Organisms. Productivity metrics for medical researchers in rare diseases. iBIOFind 2013 database now includes over 150 medical schools in the US along with Clinical Translational Science Award Institutions for the generation of biomedical knowledge, biomedical informatics and Researcher Profiles.

Proper citation: iBIOFind (RRID:SCR_001587) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X