Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005681

http://mcbc.usm.edu/gofetcher/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. We developed a web application, GOfetcher, with a very comprehensive search facility for the GO project and a variety of output formats for the results. GOfetcher has three different levels for searching the GO: Quick Search, Advanced Search, and Upload Files for searching. The application includes a unique search option which generates gene information given a nucleotide or protein accession number which can then be used in generating gene ontology information. The output data in GOfetcher can be saved into several different formats; including spreadsheet, comma-separated values, and the Extensible Markup Language (XML) format. Platform: Online tool

Proper citation: GOfetcher (RRID:SCR_005681) Copy   


  • RRID:SCR_005682

    This resource has 1+ mentions.

http://llama.mshri.on.ca/gofish/GoFishWelcome.html

Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GoFish (RRID:SCR_005682) Copy   


  • RRID:SCR_005778

http://www.garban.org/garban/home.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 12, 2012. GARBAN is a tool for analysis and rapid functional annotation of data arising from cDNA microarrays and proteomics techniques. GARBAN has been implemented with bioinformatic tools to rapidly compare, classify, and graphically represent multiple sets of data (genes/ESTs, or proteins), with the specific aim of facilitating the identification of molecular markers in pathological and pharmacological studies. GARBAN has links to the major genomic and proteomic databases (Ensembl, GeneBank, UniProt Knowledgebase, InterPro, etc.), and follows the criteria of the Gene Ontology Consortium (GO) for ontological classifications. Source may be shared: e-mail garban (at) ceit.es. Platform: Online tool

Proper citation: GARBAN (RRID:SCR_005778) Copy   


  • RRID:SCR_005774

    This resource has 1+ mentions.

http://corneliu.henegar.info/FunCluster.htm

FunCluster is a genomic data analysis algorithm which performs functional analysis of gene expression data obtained from cDNA microarray experiments. Besides automated functional annotation of gene expression data, FunCluster functional analysis aims to detect co-regulated biological processes through a specially designed clustering procedure involving biological annotations and gene expression data. FunCluster''''s functional analysis relies on Gene Ontology and KEGG annotations and is currently available for three organisms: Homo Sapiens, Mus Musculus and Saccharomyces Cerevisiae. FunCluster is provided as a standalone R package, which can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix). Download it from the FunCluster website, or from the worldwide mirrors of CRAN. FunCluster is provided freely under the GNU General Public License 2.0. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FunCluster (RRID:SCR_005774) Copy   


http://great.stanford.edu/public/html/splash.php

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy   


  • RRID:SCR_005766

    This resource has 1+ mentions.

http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#GOHyperGAll

To test a sample population of genes for overrepresentation of GO terms, the R/BioC function GOHyperGAll computes for all GO nodes a hypergeometric distribution test and returns the corresponding p-values. A subsequent filter function performs a GO Slim analysis using default or custom GO Slim categories. Basic knowledge about R and BioConductor is required for using this tool. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GOHyperGAll (RRID:SCR_005766) Copy   


  • RRID:SCR_005829

    This resource has 5000+ mentions.

http://www.ebi.ac.uk/Tools/pfa/iprscan/

Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.

Proper citation: InterProScan (RRID:SCR_005829) Copy   


  • RRID:SCR_005824

    This resource has 1+ mentions.

http://www.ebi.ac.uk/webservices/whatizit/info.jsf

A text processing system that allows you to do textmining tasks on text. It is great at identifying molecular biology terms and linking them to publicly available databases. Whatizit is also a Medline abstracts retrieval/search engine. Instead of providing the text by Copy&Paste, you can launch a Medline search. The abstracts that match your search criteria are retrieved and processed by a pipeline of your choice. Whatizit is also available as 1) a webservice and as 2) a streamed servlet. The webservice allows you to enrich content within your website in a similar way as in the wikipedia. The streamed servlet allows you to process large amounts of text.

Proper citation: Whatizit (RRID:SCR_005824) Copy   


http://www.patternlabforproteomics.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented July 5, 2018. Gene Ontology Explorer (GOEx) combines data from protein fold changes with GO over-representation statistics to help draw conclusions in proteomic experiments. It is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. A recent hack included in GOEx is to load the sparse matrix index file directly into GOEx, instead of going through the report generation using the AC/T-fold methods. This makes it easy for GOEx to analyze any list of proteins as long as the list follows the index file format (described in manuscript) . Please note that if using this alternative strategy, there will be no protein fold information. Platform: Windows compatible

Proper citation: GOEx - Gene Ontology Explorer (RRID:SCR_005779) Copy   


  • RRID:SCR_005732

    This resource has 10+ mentions.

http://code.google.com/p/owltools/

OWLTools (aka OWL2LS - OWL2 Life Sciences) is a java API for accessing ontologies in either OBO or OWL. OWLTools provides a bio-ontologies friendly wrapper on top of the Manchester OWL API. It provides many features, including: * convenience methods for OBO-like properties such as synonyms, textual definitions, obsoletion, replaced_by * simple graph-like operations over ontologies * visualization using the QuickGO graphs libraries Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: OWLTools (RRID:SCR_005732) Copy   


http://www.blipkit.org/

Biomedical Logical Programming (Blip) is a research-oriented deductive database and prolog application library for handling biological and biomedical data. It includes packages for advanced querying of ontologies and annotations. Blip underpins the Obol tool. Here are some distinguishing characteristics of Blip * Lightweight. Bloat-free: Blip only has as many modules as it needs to do its job. * Fast. * Declarative. Say what you want to do, not how you want to do it * Blip can be Query-oriented: specify your data sources and ask your query * Blip can be Application-oriented: it is designed to be used as an application library used by other bioinformatics tools * Mature and fully functional ontology module for handling both OBO-style ontologies and OWL ontologies. * Modules for handling biological sequences and sequence features. (currently limited functionality, added as needed) * A systems biology module for querying pathway and interaction data. (currently limited functionality, added as needed) * Relational database integration. SQL can be viewed as a highly restricted dialect of Prolog. Although the SWI-Prolog in-memory database is fast and scalable, sometimes it is nice to be able to fetch data from an external database. Blip contains a generic SQL utility module and predicate mappings for the GO database, Ensembl and Chado * Integration with a variety of bioinformatics file formats. SWI-Prolog has a variety of fast libraries for dealing with XML, RDF and tabular data files. Blip provides bridges from bio file formats encoded using these syntaxes into its native models. For other syntaxes, Blip seamlessly integrates other packages such as BioPerl and go-perl. Although these dependencies require extra installation, there is no point reinventing the wheel * Rapid development of web applications. Blip extends SWI-Prolog''''s excellent http support with a simple and powerful logical-functional-programming style application server, serval. This has been used to prototype a fully-featured next-generation replacement for the GO project amigo browser. * Scalable. Blip is not intended to be a toy system on toy data (although it is happy to be used as a toy if you like!). It is intended to be used as an application component and a tool operating on real-world biological and biomedical data Blip is written in SWI-Prolog, a fast, robust and scalable implementation of ISO Prolog. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Blip: Biomedical Logic Programming (RRID:SCR_005733) Copy   


http://www.dbfordummies.com/go.asp

Db for Dummies! is a small database that imports the Generic GO Slim. It allows data to be viewed in a tree. The Gene Ontology describes gene products in terms of their associated biological processes, cellular components and molecular functions. The Generic Slim Gene Ontology is a subset of the whole Gene Ontology. The slim version gives a broad overview and leaves out specific/fine grained terms. This example stores the slim version of the Gene Ontology (goslim_generic_obo) that can be downloaded from www.geneontology.org/GO.slims.shtml. Platform: Windows compatible

Proper citation: DBD - Slim Gene Ontology (RRID:SCR_005728) Copy   


  • RRID:SCR_005725

    This resource has 1+ mentions.

http://vortex.cs.wayne.edu/projects.htm#Onto-Translate

In the annotation world, the same piece of information can be stored and viewed differently across different databases. For instance, more than one Affymetrix probe ID can refer to the same GenBank sequence (accession number) and more than one nucleotide sequence from GenBank can be grouped in a single UniGene cluster. The result of Onto-Express depends on whether the input list contains Affymetrix probe IDs, GenBank accession numbers or UniGene cluster IDs. The user has to be aware of relations between the different forms of the data in order to interpret correctly the results. Even if the user is aware of the relationships and knows how to convert them, most existing tools allow conversions of individual genes. Onto-Translate is a tool that allows the user to perform easily such translations. Affymetrix probe IDs, etc., translate GO terms into other identifiers like GenBank accession number, Uniprot IDs. User account required. Platform: Online tool

Proper citation: Onto-Translate (RRID:SCR_005725) Copy   


  • RRID:SCR_005726

    This resource has 1000+ mentions.

http://toppgene.cchmc.org/

ToppGene Suite is a one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network. ToppGene Suite is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis.

Proper citation: ToppGene Suite (RRID:SCR_005726) Copy   


  • RRID:SCR_005748

    This resource has 1000+ mentions.

http://www.ici.upmc.fr/cluego/

A Cytoscape plug-in that visualizes the non-redundant biological terms for large clusters of genes in a functionally grouped network. It can be used in combination with GOlorize. The identifiers can be uploaded from a text file or interactively from a network of Cytoscape. The type of identifiers supported can be easily extended by the user. ClueGO performs single cluster analysis and comparison of clusters. From the ontology sources used, the terms are selected by different filter criteria. The related terms which share similar associated genes can be combined to reduce redundancy. The ClueGO network is created with kappa statistics and reflects the relationships between the terms based on the similarity of their associated genes. On the network, the node colour can be switched between functional groups and clusters distribution. ClueGO charts are underlying the specificity and the common aspects of the biological role. The significance of the terms and groups is automatically calculated. ClueGO is easy updatable with the newest files from Gene Ontology and KEGG. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: ClueGO (RRID:SCR_005748) Copy   


  • RRID:SCR_005735

    This resource has 1+ mentions.

http://www.stanford.edu/~nigam/cgi-bin/dokuwiki/doku.php?id=clench

Cluster Enrichment (CLENCH) allows A. thaliana researchers to perform automated retrieval of GO annotations from TAIR and calculate enrichment of GO terms in gene group with respect to a reference set. Before calculating enrichment, CLENCH allows mapping of the returned annotations to arbitrary coarse levels using GO slim term lists (which can be edited by the user) and a local installation of GO. Platform: Windows compatible, Linux compatible,

Proper citation: CLENCH (RRID:SCR_005735) Copy   


  • RRID:SCR_006794

    This resource has 50+ mentions.

https://cansar.icr.ac.uk/

canSAR is an integrated database that brings together biological, chemical, pharmacological (and eventually clinical) data. Its goal is to integrate this data and make it accessible to cancer research scientists from multiple disciplines, in order to help with hypothesis generation in cancer research and support translational research. This cancer research and drug discovery resource was developed to utilize the growing publicly available biological annotation, chemical screening, RNA interference screening, expression, amplification and 3D structural data. Scientists can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets. canSAR has, from the outset, been completely use-case driven which has dramatically influenced the design of the back-end and the functionality provided through the interfaces. The Web interface provides flexible, multipoint entry into canSAR. This allows easy access to the multidisciplinary data within, including target and compound synopses, bioactivity views and expert tools for chemogenomic, expression and protein interaction network data.

Proper citation: canSAR (RRID:SCR_006794) Copy   


  • RRID:SCR_006922

    This resource has 10+ mentions.

http://bioconductor.org/packages/2.9/bioc/html/RamiGO.html

Software package with an R interface sending requests to AmiGO visualize, retrieving DAG GO trees, parsing GraphViz DOT format files and exporting GML files for Cytoscape. Also uses RCytoscape to interactively display AmiGO trees in Cytoscape.

Proper citation: RamiGO (RRID:SCR_006922) Copy   


  • RRID:SCR_006919

    This resource has 1+ mentions.

http://sourceforge.net/p/fastsemsim/home/Home/

A package that implements several semantic similarity measures. It is both a library and an end-user application, featuring an intuitive graphical user interface (GUI). It has been implemented with the aim of being fast, expandable, and easy to use. It allows the user to work with the most updated version of GO database and customizable annotation corpora. It provides a set of logically-organized classes that can be easily exploited to both integrate semantic similarity into different analysis pipelines and extend the library with new measures. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FastSemSim (RRID:SCR_006919) Copy   


  • RRID:SCR_006941

    This resource has 10+ mentions.

http://geneontology.org/docs/tools-overview/

Collection of tools developed by GO Consortium and by third parties. Tools are listed by category or alphabetically and continue to be improved and expanded.

Proper citation: Gene Ontology Tools (RRID:SCR_006941) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X