Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://sncid.stanleyresearch.org/
A database of 1749 neuropathological markers measured in 12 different brain regions from 60 brains in the Consortium Collection from the Stanley Medical Research Institute combined with microarray data and statistical tools. Fifteen brains each are from patients diagnosed with schizophrenia, bipolar disorder, or major depression, and unaffected controls. The four groups are matched by age, sex, race, postmortem interval, pH, side of brain, and mRNA quality. A Repository of raw data is also included. Users must register for access.
Proper citation: Stanley Neuropathology Consortium Integrative Database (RRID:SCR_002749) Copy
http://www.brainbank.mclean.org/
Biomaterial supply resource that acquires, processes, stores, and distributes postmortem brain specimens for brain research. Various types of brain tissue are collected, including those with neurological and psychiatric disorders, along with their parents, siblings and offspring. The HBTRC maintains an extensive collection of postmortem human brains from individuals with Huntington's chorea, Alzheimer's disease, Parkinson's disease, and other neurological disorders. In addition, the HBTRC also has a collection of normal-control specimens.
Proper citation: Harvard Brain Tissue Resource Center (RRID:SCR_003316) Copy
https://team.inria.fr/empenn/research/
Research team focused on research and development of new algorithms in medical imaging, information processing and computer assisted intervention in the context of the pathologies of the central nervous system. Research team jointly affiliated to INSERM (National Institute of Health and Scientific Research), Inria (National Institute of Research in Computer Sciences and Automation) and IRISA / UMR CNRS 6074, University of Rennes I. Multidisciplinary team merging researchers in image processing and medical doctors.
Proper citation: VISAGES Research (RRID:SCR_000749) Copy
http://national_databank.mclean.org
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.
Proper citation: National Brain Databank (RRID:SCR_003606) Copy
Consortium conducting meta-analyses of genome-wide genetic data for psychiatric disease. Focused on autism, attention-deficit hyperactivity disorder, bipolar disorder, major depressive disorder, schizophrenia, anorexia nervosa (AN), Tourette syndrome (TS), and obsessive-compulsive disorder (OCD). Used to investigate common single nucleotide polymorphisms (SNPs) genotyped on commercial arrays, structural variation (copy number variation) and uncommon or rare genetic variation. To participate you are asked to upload data from your study to central computer used by this consortium. Genetic Cluster Computer serves as data warehouse and analytical platform for this study . When data from your study have been incorporated, account will be provided on central server and access to all GWAS genotypes, phenotypes, and meta-analytic results relevant to deposited data and participation aims. NHGRI GWAS Catalog contains updated information about all GWAS in biomedicine, and is usually excellent starting point to find comprehensive list of studies. Files can be obtained by any PGC member for any disease to which they contributed data. These files can also be obtained by application to NIMH Genetics Repository. Individual-level genotype and phenotype data requires application, material transfer agreement, and informed consent consideration. Some datasets are also in controlled-access dbGaP and Wellcome Trust Case-Control Consortium repositories. PGC members can also receive back cleaned and imputed data and results for samples they contributed to PGC analyses.
Proper citation: Psychiatric Genomics Consortium (RRID:SCR_004495) Copy
http://www.nitrc.org/projects/nusdast
A repository of schizophrenia neuroimaging data collected from over 450 individuals with schizophrenia, healthy controls and their respective siblings, most with 2-year longitudinal follow-up. The data include neuroimaging data, cognitive data, clinical data, and genetic data.
Proper citation: Northwestern University Schizophrenia Data and Software Tool (NUSDAST) (RRID:SCR_014153) Copy
A public charity whose mission is to support the NIH in its mission to improve health, by forming and facilitating public-private partnerships for biomedical research and training. Its vision is Building Partnerships for Discovery and Innovation to Improve Health. The FNIH draws together the world''s foremost researchers and resources, pressing the frontier to advance critical discoveries. They are recognized as the number-one medical research charity in the countryleveraging support, and convening high level partnerships, for the greatest impact on the most urgent medical challenges we face today. Grants are awarded as part of a public-private partnership with the National Heart, Lung, and Blood Institute (NHLBI) on behalf of The Heart Truth in support of women''s heart health education and research. Funding for the Community Action Program is provided by the FNIH through donations from individuals and corporations including The Heart Truth partners Belk Department Stores, Diet Coke, and Swarovski. Successful biomedical research relies upon the knowledge, training and dedication of those who conduct it. Bringing multiple disciplines to bear on health challenges requires innovation and collaboration on the part of scientists. Foundation for NIH partnerships operate in a variety of ways and formats to recruit, train, empower and retain their next generation of researchers. From lectures and multi-week courses, to scholarships and awards through fellowships and residential training programs, their programs respond to the needs of scientists at every level and stage in their careers.
Proper citation: Foundation for the National Institutes of Health (RRID:SCR_004493) Copy
http://www.brainnet-europe.org/index.php?option=com_content&view=article&id=99&Itemid=99
Sampling protocols produced by the BrainNet Europe Consortium generally with five types of dissection and brain processing procedures defined in all disease related protocols. * Fresh brain dissection * Fresh brain processing * Dissection of formalin-fixed brain * Histology and immunohistochemistry * Processing fresh brain
Proper citation: BrainNet Europe Sampling Protocols (RRID:SCR_000484) Copy
A drug discovery company focused on small-molecule drugs targeting G-protein-coupled receptors (GPCRs), the largest family of druggable targets. Heptares creates new medicines targeting previously undruggable or challenging GPCRs, a superfamily of receptors linked to many diseases. They are pioneering a structure-based drug design approach to GPCRs, leveraging proprietary technologies for protein stabilization, structure determination, and fragment-based discovery. Their partners include Cubist, MorphoSys, AstraZeneca, MedImmune and Takeda. Their objective is to build a broad pipeline of novel medicines to transform the treatment of serious diseases, including Alzheimer's disease, schizophrenia, diabetes, ADHD and chronic migraine.
Proper citation: Heptares Therapeutics (RRID:SCR_000499) Copy
http://gbrowse.csbio.unc.edu/cgi-bin/gb2/gbrowse/slep/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Database of genetic and gene expression data from the published literature on psychiatric disorders. Users can search the accumulated data to find the evidence in support of the involvement of a particular genomic region with a set of important psychiatric disorders, ADHD, autism, bipolar disorder, eating disorder, major depressive disorder, schizophrenia, and smoking behavior. It contains findings from manual reviews of 144 papers in psychiatric genetics, 136 primary reports and 8 meta-analyses. Disorders covered include schizophrenia (44 papers), autism (24 papers), bipolar disorder (24 papers), smoking behavior (24 papers), major depressive disorder and neuroticism (14 papers), ADHD (8 papers), eating disorders (3 papers), and a combined schizophrenia-bipolar phenotype (3 papers). The unbiased searches integrated into SLEP include genomewide linkage (117 papers), genomewide association (15 papers), copy number variation (9 papers), and gene expression studies of post-mortem brain tissue (3 meta-analyses courtesy of the Stanley Foundation). In total, SLEP captures 3,741 findings from these 144 papers. SLEP also contains over 70,000 SignPosts. These annotations derive from many different sources and are designed to try to capture current state of knowledge about disease associations in the human genome. SignPosts can be searched simultaneously with the psychiatric genetics literature in order to integrate these two bodies of knowledge. The SignPosts include: accumulated GWAS findings from the human genetics literature, the OMIM database, candidate gene association study literature, CNV location and frequency data, SNPs that influence gene expression in brain, genes expressed in brain, genes with evidence of imprinting and random monoalleleic expression, genes mutated in breast or colorectal cancer, and pathway data from BioCyc.
Proper citation: Sullivan Lab Evidence Project (RRID:SCR_000753) Copy
http://wiringthebrain.blogspot.com/
This blog highlights and comments on current research and hypotheses relating to how the brain wires itself up during development, how the end result can vary in different people and what happens when it goes wrong. It includes discussions of the genetic and neurodevelopmental bases of traits such as intelligence and personality characteristics, as well as of conditions such as schizophrenia, autism, dyslexia, epilepsy, synaesthesia and others.
Proper citation: Wiring the Brain (RRID:SCR_005528) Copy
http://www.polygenicpathways.co.uk
Database of disease genes and risk factors and of host pathogen/interactomes. Lists genes, pathways and environmental risk factors positively associated with diseases and conditions such as Alzheimer's disease, schizophrenia, multiple sclerosis, childhood obesity, anorexia nervosa, HIV-1/AIDS, and helicobacter pylori. Details of polymorphisms as well as negative/positive association data can be found via Useful links. Throughout the site are links to Entrez Gene and Pubmed.
Proper citation: Polygenic Pathways (RRID:SCR_006962) Copy
http://www.nitrc.org/projects/cs_schizbull08/
This project hosts data for CANDI Share Schizophrenia Bulletin 2008 (reference below) as part of the CANDI Neuroimaging Access Point. This set includes preprocessed MRI images and segmentation results of all 4 diagnostic groups (Healthy Controls, N=29; Schizophrenia Spectrum, N=20; Bipolar Disorder with Psychosis, N=19; and Bipolar Disorder without Psychosis, N=35). Frazier JA, Hodge SM, Breeze JL, Giuliano AJ, Terry JE, Moore CM, Kennedy DN, Lopez-Larson MP, Caviness VS, Seidman LJ, Zablotsky B, Makris N. Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr Bull. 2008 Jan;34(1):37-46.
Proper citation: CANDI Share: Schizophrenia Bulletin 2008 (RRID:SCR_009451) Copy
https://bbgre.brc.iop.kcl.ac.uk
A database and associated tools for investigating the genetic basis of neurodisability. It combines phenotype information from patients with neurodevelopmental and behavioral problems with clinical genetic data, and displays this information on the human genome map. Basic access to genetic information (deletions, duplications) relating to participants with neurodevelopmental disorders is provided without an account; access to the full dataset requires an account. The genetic information that is available to view comprises potentially pathogenic copy number variation across the genome, detected by array comparative genome hybridization (aCGH) using a customized 44K oligonucleotide array.
Proper citation: Brain and Body Genetic Resource Exchange (RRID:SCR_008959) Copy
http://bioinformatics.charite.de/synsysnet/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2025. A curated database for synaptic proteins that provides adequate definitions of pre- and post-synaptic proteins, proteins present in sub-domains of the synapse, e.g. the synaptic vesicle and associated proteins, lipid rafts and postsynaptic density. In addition to data that was and will be gathered from the experiments conducted within SynSys - A European expertise Network on building the synapse, they have extracted and manually curated all relevant data on these proteins from other sources and provided an ontology for these. Novel splice forms are being identified that can be matched with proteomics data. Information on proteins, their 3D structure, binding small molecules Protein-Protein-Interactions (PPIs) and Compound-Protein-Interactions are integrated. Proteins or compounds can be searched and Interactive Networks can be visualized. The point Diseases present neurological diseases, to illustrate the role of SynSysNet in the medication.
Proper citation: SynSysNet (RRID:SCR_003180) Copy
http://www.stanleyresearch.org/dnn/BrainResearchLaboratory/tabid/195/Default.aspx
It is a widely used resource for researchers trying to find the causes of, and better treatments for, schizophrenia, bipolar disorder and major depression. Brains were collected 1994 to 2005 with the permission of the families in a standardized manner, with half of each specimen being frozen and half fixed in formalin. Currently four cohorts are available for study; the Neuropathology Consortium consisting of 60 cases (15 each schizophrenia, bipolar disorder, depression, and controls), the Array Collection consisting of 105 cases (35 each schizophrenia, bipolar disorder, and controls), the Depression Collection consisting of 36 cases (12 each depression with psychosis, depression without psychosis, and controls), and the Parietal Collection of 48 cases (fixed inferior parietal sections from 24 each schizophrenia and controls). Since 1996, the Stanley Brain Collection has sent over 200,000 sections and 10,000 blocks of brain tissue to 240 research laboratories in 23 states and 20 foreign countries. All tissue has been provided to the researchers without charge. All costs for collecting, processing, and storing the brain tissue have been borne by The Stanley Medical Research Institute as a public service. All reasonable requests for brain tissue (over 90 percent of applications) have been honored. Researchers selected to receive tissue must sign an agreement that sets forth conditions for its use. Results received from researchers become part of the Stanley brain collection data set and will be used for integrative, multivariate analyses. In addition to overseeing the brain collection, the laboratory conducts research on the neuropathology of schizophrenia and bipolar disorder and on brain development. Many studies carried out at the Stanley Brain Research Laboratory are done in cooperation with studies at the Stanley Laboratory of Developmental Neurovirology.
Proper citation: Stanley Brain Collection (RRID:SCR_007062) Copy
Atlas of developing human brain for studying transcriptional mechanisms involved in human brain development. Consists of RNA sequencing and exon microarray data profiling up to sixteen cortical and subcortical structures across full course of human brain development, high resolution neuroanatomical transcriptional profiles of about 300 distinct structures spanning entire brain for four midgestional prenatal specimens, in situ hybridization image data covering selected genes and brain regions in developing and adult human brain, reference atlas in full color with high resolution anatomic reference atlases of prenatal (two stages) and adult human brain along with supporting histology, magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI) data.
Proper citation: Allen Human Brain Atlas: BrainSpan (Atlas of the Developing Brain) (RRID:SCR_008083) Copy
GWASrap is a comprehensive web-based bioinformatics tool to systematically support variant representation, annotation and prioritization for data generated from genome-wide association studies (GWAS) and Next Generation Sequencing (NGS). Our web-based framework utilizes state-of-the-art web technologies to maximize user interaction and visualization of the results. For a given SNP dataset with its P-values, GWASrap will first provide a Circos-style plot to visualize any genetic variants at either the genome or chromosome level. The tool then combines different genomic features (SNP/CNV density, disease susceptibility loci, etc.) with comprehensive annotations that give the researcher an intuitive view of the functional significance of the different genomic regions. The detailed statistics of the underlying study are also displayed on the web page, including variant distribution in different functional categories, classic Manhattan plot and QQ plot. Users can perform interactive operations in the Manhattan panel, such as zooming in and out to search regions or markers of interest. The system can also display a comprehensive range of relevant information from variant genetic attributes to nearby genomic elements, such as enhancers or non-coding RNAs. Furthermore, researchers can obtain extensive functional predictions for various features including transcription factor-binding sites, miRNA and miRNA target sites, and their predicted changes caused by the genetic variants. Our system can re-prioritize genetic variants by combining the original statistical value and variant prioritization score based on a simple additive effect equation. Researchers can also re-evaluate the significance of a trait/disease-associated SNP (TAS) using the dynamic linkage disequilibrium (LD) panel or the tree-like network panel. The GWASrap supports input variants in different formats, not only common variants with a dbSNP rs ID but also rare variants from NGS data, which are represented by chromosome and locations. GWASrap provides a range of web services for data retrieving about the annotation information and effect prediction of each variant in dbSNP using the SOAP interface. The WSDL for each service is available in the API tab. Each service returns JSON string including all related information with key/value. GWASrap provides running results about some current published GWAS as well as a category view for each hot disease / trait. The dataset is brought from published database GWAS or curated from literature.
Proper citation: GWASrap (RRID:SCR_013144) Copy
http://www.nimh.nih.gov/labs-at-nimh/research-areas/research-support-services/hbcc/index.shtml
A collection of brain tissue from individuals suffering from schizophrenia, bipolar disorder, depression, anxiety disorders, and substance abuse, as well as healthy individuals. The research mission of the NIMH Brain Bank is to better understand the underlying biological mechanisms and pathways that contribute to schizophrenia and other neuropsychiatric disorders, as well as to study normal human brain development.
Proper citation: NIMH Brain Tissue Collection (RRID:SCR_008726) Copy
http://www.mknt.hu/sites/default/files/NEPSYBANK_0.doc
The Hungarian Society of Clinical Neurgenetics established a nationwide collaboration for prospective collection of human biological materials and databases from patient with neurological and psychiatric diseases. The basic triangle of the NEPSYBANK is the sample, the information and the study management. The present participants of the NEPSYBANK are the Department of Neurology and Psychiatry of the four Medical Universities (in Budapest, Debrecen, Pecs, Szeged) and the National Institute of Psychiatry and Neurology in Budapest. The NEPSYBANK is a disease based biobank collecting both phenotypical and environmental data and biological materials such as DNA/RNA, whole blood, plasma, cerebral spinal fluid, muscle / nerve / skin biopsy, brain, and fibroblast. The target of the diseases is presently (Phase I): stroke syndromes, dementias, movement disorders, motoneuron diseases, epilepsy, multiple sclerosis, schizophrenia, alcohol addiction. In the near future (Phase II.) it is planned to enlarge the scale with headaches, disorders of the peripheral nerves, disorders of neuromuscular transmission, disorders of skeletal muscle, depression, anxiety. DNA/RNA is usually extracted from whole blood, but occasionally different tissues such as muscle, brain etc. can be used as well. The extracting procedures differ among the institutes, but in all cases the concentration and the quality of the DNA/RNA must be registered in the database. Participating institutional biobanks have committed themselves to follow common quality standards, which provide access to samples after prioritization on scientific grounds only. In every case the following data are registered. 1. General data: main bank categories, age, sex, ethnicity, body height, body weight, economic stats, education, type of place of living, marital status, birth complications, alcohol, drugs, smoking. 2. Sample properties (sample ID, type of sample, date of extraction, concentration, and level of purity). General patient data as blood pressure, heart rate, internal medical status, ECG, additional diseases. Disease specific question e.g. in schizophrenia the diagnosis after DSMIV and ICD 10, detailed diagnostic questions after both classification, detailed psychiatric and neurological status, laboratory findings, rating scales, data of neuroimaging, genetic tests, applied medication (with generic name, dose, duration), adverse drug effects and other treatments. The Biobank Information Management System (BIMS) is responsible for linkage of databases containing information on the individual sample donors. If you want to have samples from the NEPSYBANK an application must be submitted containing the following information: short research plan including aims and study design, ethic application with a positive decision, specific demands regarding the right of disposition, agreements with grant organizations which regulate immaterial property, information about financing (academic grants, support from industry). All participants have the right to withdraw their samples through a simple order.
Proper citation: Hungarian Neurological-Psychiatric Biobank (RRID:SCR_003715) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.