Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 19 showing 361 ~ 380 out of 854 results
Snippet view Table view Download 854 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005709

    This resource has 1000+ mentions.

http://genemania.org/

Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMANIA (RRID:SCR_005709) Copy   


  • RRID:SCR_005824

    This resource has 1+ mentions.

http://www.ebi.ac.uk/webservices/whatizit/info.jsf

A text processing system that allows you to do textmining tasks on text. It is great at identifying molecular biology terms and linking them to publicly available databases. Whatizit is also a Medline abstracts retrieval/search engine. Instead of providing the text by Copy&Paste, you can launch a Medline search. The abstracts that match your search criteria are retrieved and processed by a pipeline of your choice. Whatizit is also available as 1) a webservice and as 2) a streamed servlet. The webservice allows you to enrich content within your website in a similar way as in the wikipedia. The streamed servlet allows you to process large amounts of text.

Proper citation: Whatizit (RRID:SCR_005824) Copy   


http://www.pandora.cs.huji.ac.il/

With PANDORA, you can search for any non-uniform sets of proteins and detect subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA supports GO annotations as well as additional keywords (from UniProt Knowledgebase, InterPro, ENZYME, SCOP etc). It is also integrated into the ProtoNet system, thus allowing testing of thousands of automatically generated protein families. Note that PANDORA replaces the ProtoGO browser developed by the same group. Platform: Online tool

Proper citation: Pandora - Protein ANnotation Diagram ORiented Analysis (RRID:SCR_005686) Copy   


  • RRID:SCR_005681

http://mcbc.usm.edu/gofetcher/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. We developed a web application, GOfetcher, with a very comprehensive search facility for the GO project and a variety of output formats for the results. GOfetcher has three different levels for searching the GO: Quick Search, Advanced Search, and Upload Files for searching. The application includes a unique search option which generates gene information given a nucleotide or protein accession number which can then be used in generating gene ontology information. The output data in GOfetcher can be saved into several different formats; including spreadsheet, comma-separated values, and the Extensible Markup Language (XML) format. Platform: Online tool

Proper citation: GOfetcher (RRID:SCR_005681) Copy   


http://crdd.osdd.net/raghava/ccpdb/

ccPDB (Compilation and Creation of datasets from PDB) is designed to provide service to scientific community working in the field of function or structure annoation of proteins. This database of datasets is based on Protein Data Bank (PDB), where all datasets were derived from PDB. ccPDB have four modules; i) compilation of datasets, ii) creation of datasets, iii) web services and iv) Important links. * Compilation of Datasets: Datasets at ccPDB can be classified in two categories, i) datasets collected from literature and ii) datasets compiled from PDB. We are in process of collecting PDB datasetsfrom literature and maintaining at ccPDB. We are also requesting community to suggest datasets. In addition, we generate datasets from PDB, these datasets were generated using commonly used standard protocols like non-redundant chains, structures solved at high resolution. * Creation of datasets: This module developed for creating customized datasets where user can create a dataset using his/her conditions from PDB. This module will be useful for those users who wish to create a new dataset as per ones requirement. This module have six steps, which are described in help page. * Web Services: We integrated following web services in ccPDB; i) Analyze of PDB ID service allows user to submit their PDB on around 40 servers from single point, ii) BLAST search allows user to perform BLAST search of their protein against PDB, iii) Structural information service is designed for annotating a protein structure from PDB ID, iv) Search in PDB facilitate user in searching structures in PDB, v)Generate patterns service facility to generate different types of patterns required for machine learning techniques and vi) Download useful information allows user to download various types of information for a given set of proteins (PDB IDs). * Important Links: One of major objectives of this web site is to provide links to web servers related to functional annotation of proteins. In first phase we have collected and compiled these links in different categories. In future attempt will be made to collect as many links as possible.

Proper citation: ccPDB - Compilation and Creation of datasets from PDB (RRID:SCR_005870) Copy   


http://bioinformatics.biol.uoa.gr/

Laboratory focuses on research related to the elucidation of the principles governing protein structure and function, under the supervision of Professor Stavros J. Hamodrakas. In particular, original research is carried out along two main axes: # Algorithm development for the prediction of protein structure, function and interactions from amino acid sequence as well as construction of relevant databases. # Application of a variety of Biophysical methods and techniques for protein structure determination and for structural studies of complex, physiologically important, Biological tissues such as insect chorion and cuticle. More than 15 individuals (including post-doctoral researchers, PhD students, MSc and undergraduate students) are currently involved in several ongoing research projects. Apart from research, our lab offers undergraduate courses in Bioinformatics and Molecular Biophysics, which are elective for the degrees (BSc) in Biology (Faculty of Biology) and Physics (Faculty of Physics) of the University of Athens. At the same time, our lab is actively involved in the organization and co-ordination of the MSc Programme in Bioinformatics of the Faculty of Biology.

Proper citation: University of Athens Biophysics and Bioinformatics Laboratory (RRID:SCR_006180) Copy   


  • RRID:SCR_006122

    This resource has 1+ mentions.

http://www-bionet.sscc.ru/sitex/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2019. Analyzing protein structure projection on exon-intron structure of corresponding gene through years led to several fundamental conclusions about structural and functional organization of the protein. According to these results we decided to map the protein functional sites. So we created the database SitEx that keep the information about this mapping and included the BLAST search and 3D similar structure search using PDB3DScan for the polypeptide encoded by one exon, participating in organizing the functional site. This will help: # to study the positions of the functional sites in exon structure; # to make the complex analysis of the protein function; # to exposure the exons that took part in exon shuffling and came from bacterial genomes; # to study the peculiarities of coding the polypeptide structures. Currently, SitEx contains information about 9994 functional sites presented in 2021 proteins described in proteomes of 17 organisms.

Proper citation: SitEx (RRID:SCR_006122) Copy   


http://idp1.force.cs.is.nagoya-u.ac.jp/pscdb/

Database for protein structural change upon ligand binding that are classified into 7 classes in terms of the ligand binding sites and the location where the dominant motion occurs. # Coupled Domain motions are the domain motions induced upon ligand binding. # Independent Domain motions are the observable domain motions regardless of ligand binding. # Coupled Local motions are the local motions induced upon ligand binding. # Independent Local motions are the observable local motions regardless of ligand binding. # Burying ligand motions are imaginable motions required to hold ligand protein-inside. # No significant motions mean just nothing happen. # Other motions are motions unclassified into domain and local motions. Proteins are flexible molecules that undergo structural changes to function. The Protein Data Bank contains multiple entries for identical proteins determined under different conditions, e.g. with and without a ligand molecule, which provides important information for understanding the structural changes related to protein functions. We gathered 839 protein structural pairs of ligand-free and ligand-bound states from monomeric or homo-dimeric proteins, and constructed the Protein Structural Change DataBase (PSCDB). In the database, we focused on whether the motions were coupled with ligand binding. As a result, the protein structural changes were classified into seven classes, i.e. coupled domain motion (59 structural changes), independent domain motion (70), coupled local motion (125), independent local motion (135), burying ligand motion (104), no significant motion (311) and other type motion (35). PSCDB provides lists of each class. On each entry page, users can view detailed information about the motion, accompanied by a morphing animation of the structural changes.

Proper citation: PSCDB - Protein Structural Change DataBase (RRID:SCR_006116) Copy   


  • RRID:SCR_006073

    This resource has 1+ mentions.

http://newt-omics.mpi-bn.mpg.de/index.php

Newt-omics is a database, which enables researchers to locate, retrieve and store data sets dedicated to the molecular characterization of newts. Newt-omics is a transcript-centered database, based on an Expressed Sequence Tag (EST) data set from the newt, covering ~50,000 Sanger sequenced transcripts and a set of high-density microarray data, generated from regenerating hearts. Newt-omics also contains a large set of peptides identified by mass spectrometry, which was used to validate 13,810 ESTs as true protein coding. Newt-omics is open to implement additional high-throughput data sets without changing the database structure. Via a user-friendly interface Newt-omics allows access to a huge set of molecular data without the need for prior bioinformatical expertise. The newt Notopthalmus viridescens is the master of regeneration. This organism is known for more than 200 years for its exceptional regenerative capabilities. Newts can completely replace lost appendages like limb and tail, lens and retina and parts of the central nervous system. Moreover, after cardiac injury newts can rebuild the functional myocardium with no scar formation. To date only very limited information from public databases is available. Newt-Omics aims to provide a comprehensive platform of expressed genes during tissue regeneration, including extensive annotations, expression data and experimentally verified peptide sequences with yet no homology to other publicly available gene sequences. The goal is to obtain a detailed understanding of the molecular processes underlying tissue regeneration in the newt, that may lead to the development of approaches, efficiently stimulating regenerative pathways in mammalians. * Number of contigs: 26594 * Number of est in contigs: 48537 * Number of transcripts with verified peptide: 5291 * Number of peptides: 15169

Proper citation: Newtomics (RRID:SCR_006073) Copy   


  • RRID:SCR_006070

    This resource has 10+ mentions.

http://www.nematodes.org/nembase4/

NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.

Proper citation: NEMBASE (RRID:SCR_006070) Copy   


https://ua.ilab.agilent.com/service_center/show_external/4535?name=analytical-and-biological-mass-spectrometry

Provides equipment and expertise for analysis of variety of biological and small molecules.Services include protein analysis encompassing protein identification, protein and peptide sequence confirmation, intact protein molecular weight determination, complex protein sample analysis, and protein/antibody drug interactions.Developed metabolomics library to support metabolomic and lipidomics analysis. Can identify range of post-translational modifications, determining their presence or absence, as well as quantitating PTMs.Proteomics and small molecule services include workflows for label free,chemical labeling (iTRAQ/TMT) and metabolic labeling (SILAC).Service for molecular synthesis, with monitoring reaction steps,calculating percentage of product, testing for purity, and molecule characterization with high resolution and high mass accuracy.Provides molecular weight and chemical composition determinations, structure elucidations and compound identification analysis or confirmation and accurate mass measurements of synthetic products, measurement of polymers, nucleic acids (DNA/RNA), peptides, proteins, natural products, and assistance with determination of unknowns.

Proper citation: University of Arizona Analytical and Biological Mass Spectrometry Core Facility (RRID:SCR_023370) Copy   


  • RRID:SCR_003536

    This resource has 1+ mentions.

http://specimencentral.com/

World's open biospecimen research database where biobanks and biomedical researchers meet to exchange human biospecimen needs and supply: whole blood, serum, plasma, solid tissue samples and more. The connection is accelerated so researchers save valuable time and money and tissue banks utilize inventory. The pace of specimen procurement remains unacceptably slow to the biomedical research community. Specimen Central is the foremost global resource to aid biomedical researchers in expediting their search for high quality human biospecimens, tissues, samples and specimens. They facilitate your search for blood, whole blood, buccal swab, DNA, RNA, protein, cell lines, plasma, serum, RBC, white cells, buffy coat, fluid, marrow, urine, stem cells, and solid tissue such as tumor, tumor and biopsy materials spanning all manner of common and rare pathologies and indications including Alzheimer's, basal cell carcinoma, bladder cancer, bone cancer, brain cancer, breast cancer, cerebrospinal fluid, amniotic fluid, colorectal cancer, colon cancer, hodgkins and non-hodgkins lymphoma, kidney/renal cancer, leukemia, liver cancer, lung cancer, melanoma, multiple sclerosis, myeloma neuroblastoma, neurodegenerative diseases, ovarian cancer, pancreatic cancer, prostate cancer, urinary cancer. This includes adult and pediatric indications. Specimen Central users specify a number of variables in their Specimen Requests, including preparation, preservation and handling requirements such as cryo-preserved, FFPE (Formalin-fixed paraffin-embedded), formalin, frozen, refrigerated, OCT, snap frozen, paraffin block, fresh, prospective, autopsy or cadaveric, etc. Many users require clinically annotated date associated with their specimens, as well as documentation of IRB or ethics committee approval and informed consents. For Researchers Most specimen databases require researchers to waste time and effort entering lengthy registrations and search queries that yield poor results, if anything. Specimen Central solves this problem by having tissue banks search for you. From years to months, months to weeks, and weeks to days, Specimen Central seeks to reduce delays and costs in the research & development life cycle by expediting connections between demand and supply. For Biobanks The capital costs of maintaining a biobank infrastructure are substantial and growing. Biobanks use Specimen Central as a marketing tool to augment their business development efforts. By routinely checking Specimen Central's Specimen Requests, biobanks can uncover market demand for their inventories and develop new connections and revenue streams to defray costs. Specimen Central supplements - not displaces - the efforts of your sales representatives, agents, brokers and commercial partners.

Proper citation: SpecimenCentral.com (RRID:SCR_003536) Copy   


  • RRID:SCR_016570

https://www.kbdna.com/

Commercial provider of antibodies, antigens and recombinant proteins from Braintree, Massachusetts . Biotechnology company which provides custom oligonucleotides synthesis service.

Proper citation: kbDNA Inc. (RRID:SCR_016570) Copy   


http://www.nmrfam.wisc.edu/

Provides access and developes NMR technology to advance range of applications and improves the efficiency, rigor and reproducibility of NMR data acquisition and analysis. Houses NMR spectrometers equipped with state-of-the-art probe technology and protocols to support acquisition of high-quality data. Spectrometers range from 500 MHz to 1100 MHz. Service is tailored to the needs of individual users and projects. Provides training and advice on experimental design, best practices for data acquisition, and data analysis. Experienced staff support users with training opportunities including workshops, video tutorials and protocols.

Proper citation: National Magnetic Resonance Facility at Madison (RRID:SCR_001449) Copy   


  • RRID:SCR_002434

    This resource has 1+ mentions.

http://mpr.nci.nih.gov/prow/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. It offers short, structured reviews of proteins and protein families, especially leukocyte surface membrane molecules. Index of information available from PROW includes CD molecule, Alternate names, Current Guides, Past Guides, Entrez Gene and Assigning workshop. Current guides: expanded format including Summary Sentence and Abstract Past guides: older guides with excellent information, some data may be dated

Proper citation: PROW (RRID:SCR_002434) Copy   


http://biology.hunter.cuny.edu/index.php?option=com_content&view=article&id=138&Itemid=117

Facility which provides instruments and instrument resources for analyzing DNA, RNA, protein, and radio-labeled substances.

Proper citation: Hunter Genomic Facility (RRID:SCR_001983) Copy   


  • RRID:SCR_002426

    This resource has 10+ mentions.

http://www.ebi.ac.uk/genomes

The EBI genomes pages give access to a large number of complete genomes including bacteria, archaea, viruses, phages, plasmids, viroids and eukaryotes. Methods using whole genome shotgun data are used to gain a large amount of genome coverage for an organism. WGS data for a growing number of organisms are being submitted to DDBJ/EMBL/GenBank. Genome entries have been listed in their appropriate category which may be browsed using the website navigation tool bar on the left. While organelles are all listed in a separate category, any from Eukaryota with chromosome entries are also listed in the Eukaryota page. Within each page, entries are grouped and sorted at the species level with links to the taxonomy page for that species separating each group. Within each species, entries whose source organism has been categorized further are grouped and numbered accordingly. Links are made to: * taxonomy * complete EMBL flatfile * CON files * lists of CON segments * Project * Proteomes pages * FASTA file of Proteins * list of Proteins

Proper citation: EBI Genomes (RRID:SCR_002426) Copy   


  • RRID:SCR_003658

http://www.linked-neuron-data.org/

Neuroscience data and knowledge from multiple scales and multiple data sources that has been extracted, linked, and organized to support comprehensive understanding of the brain. The core is the CAS Brain Knowledge base, a very large scale brain knowledge base based on automatic knowledge extraction and integration from various data and knowledge sources. The LND platform provides services for neuron data and knowledge extraction, representation, integration, visualization, semantic search and reasoning over the linked neuron data. Currently, LND extracts and integrates semantic data and knowledge from the following resources: PubMed, INCF-CUMBO, Allen Reference Atlas, NIF, NeuroLex, MeSH, DBPedia/Wikipedia, etc.

Proper citation: Linked Neuron Data (RRID:SCR_003658) Copy   


http://harvard.eagle-i.net/i/0000012a-2518-fb6c-5617-794280000000

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 27, 2023. Core provides services: RT PCR service, Gene expression profiling service, Proteomics analysis service, Bioinformatics and Systems Biology analyses, Next Generation Sequencing Service, Affymetrix Human and Mouse Gene 2.0 ST Arrays and 2.1 ST Arrayplates. Core proteomics facility for the Dana-Farber/Harvard Cancer Center. Workflows and algorithms for analysis of next-generation sequencing data including RNA-Seq, ChIP-Seq, Epigenetics-Seq and DNA seq, Comprehensive workflow for analysis of Microbiome sequencing data, Integrated systems biology analysis of transcriptome, miRNA, epigenome, metabolomics and proteomics data. Pipelines: MALDI Tissue imaging and targeted quantitative proteomics.

Proper citation: Beth Israel Deaconess Medical Center Genomics Proteomics Bioinformatics and Systems Biology Center (RRID:SCR_009668) Copy   


http://www.salk.edu/science/core-facilities/peptide-synthesis/

Core facility that provides services such as peptide synthesis, incorporation of non-conventional and/or modified amino acids, HPCL characterization and purification, and Mass spec analysis.

Proper citation: Salk Institute Peptide Synthesis Core Facility (RRID:SCR_014848) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X