Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 19 showing 361 ~ 380 out of 445 results
Snippet view Table view Download 445 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_021733

    This resource has 10+ mentions.

https://github.com/nskvir/RepEnrich

Software tool to profile enrichment of next generation sequencing reads at transposable elements. Method to estimate repetitive element enrichment using high throughput sequencing data. Used to study genome wide transcriptional regulation of repetitive elements.RepEnrich2 is updated method to estimate repetitive element enrichment using high-throughput sequencing data.

Proper citation: RepEnrich (RRID:SCR_021733) Copy   


  • RRID:SCR_022197

    This resource has 10+ mentions.

https://vanvalen.github.io/about/

Software for segmenting individual cells in microscopy images using deep learning. Cell segmentation software.

Proper citation: DeepCell (RRID:SCR_022197) Copy   


  • RRID:SCR_000390

    This resource has 10+ mentions.

http://www.bindingdb.org

Web accessible database of data extracted from scientific literature, focusing on proteins that are drug-targets or candidate drug-targets and for which structural data are present in Protein Data Bank . Website supports query types including searches by chemical structure, substructure and similarity, protein sequence, ligand and protein names, affinity ranges and molecular weight . Data sets generated by BindingDB queries can be downloaded in form of annotated SDfiles for further analysis, or used as basis for virtual screening of compound database uploaded by user. Data are linked to structural data in PDB via PDB IDs and chemical and sequence searches, and to literature in PubMed via PubMed IDs .

Proper citation: BindingDB (RRID:SCR_000390) Copy   


  • RRID:SCR_000923

http://hanalyzer.sourceforge.net/

An open-source data integration system designed to assist biologists in explaining the results observed in genome-scale experiments as well as generating new hypotheses. It combines information extraction techniques, semantic data integration, and reasoning and facilitates network visualization. The Hanalyzer source code and binaries are available for download.

Proper citation: Hanalyzer (RRID:SCR_000923) Copy   


  • RRID:SCR_001635

    This resource has 1+ mentions.

http://mus.well.ox.ac.uk/gscandb/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Database / display tool of genome scans, with a web interface that lets the user view the data. It does not perform any analyses - these must be done by other software, and the results uploaded into it. The basic features of GSCANDB are: * Parallel viewing of scans for multiple phenotypes. * Parallel analyses of the same scan data. * Genome-wide views of genome scans * Chromosomal region views, with zooming * Gene and SNP Annotation is shown at high zoom levels * Haplotype block structure viewing * The positions of known Trait Loci can be overlayed and queried. * Links to Ensembl, MGI, NCBI, UCSC and other genome data browsers. In GSCANDB, a genome scan has a wide definition, including not only the usual statistical genetic measures of association between genetic variation at a series of loci and variation in a phenotype, but any quantitative measure that varies along the genome. This includes for example competitive genome hybridization data and some kinds of gene expression measurements.

Proper citation: WTCHG Genome Scan Viewer (RRID:SCR_001635) Copy   


  • RRID:SCR_001380

    This resource has 1+ mentions.

http://www.isi.edu/projects/bioscholar/overview

Knowledge management and engineering system software for experimental biomedical scientists permitting a single scientific worker (at the level of a graduate student or postdoctoral worker) to design, construct and manage a shared knowledge repository for a research group derived on a local store of PDF files. Usability is especially emphasized within a laboratory so that this software could provide support to experimental scientists attempting to construct a personalized representation of their own knowledge on a medium scale. The BioScholar system uses a graphical interface to create experimental designs based on the experimental variables in the system. The design is then analyzed to construct a tabular input form based on the data flow. They call this methodology "Knowledge Engineering from Experimental Design" or "KEfED". The approach is domain-independent but domain-specific modules reasoning can be constructed to generate interpretations from the observational data represented in the KEfED model. The application is available for download as platform-specific installers including Linux, Unix, Mac OS, and Windows. The installer will install an application that will run the BioScholar server. This server uses Jetty as its integrated web server.

Proper citation: Bioscholar (RRID:SCR_001380) Copy   


  • RRID:SCR_002437

    This resource has 50+ mentions.

http://ecogene.org/

Database that contains updated information about the Escherichia coli K-12 genome and proteome sequences, including extensive gene bibliographies. Users are able to download customized tables, perform Boolean query comparisons, generate sets of paired DNA sequences, and download any E. coli K-12 genomic DNA sub-sequence. BLAST functions, microarray data, an alphabetical index of genes, and gene overlap queries are also available. The Database Table Downloads Page provides a full list of EG numbers cross-referenced to the new cross-database ECK numbers and other common accession numbers, as well as gene names and synonyms. Monthly release archival downloads are available, but the live, daily updated version of EcoGene is the default mysql database for download queries.

Proper citation: EcoGene (RRID:SCR_002437) Copy   


  • RRID:SCR_002433

    This resource has 100+ mentions.

http://ecocyc.org/

Database for the bacterium Escherichia coli K-12 MG1655, the EcoCyc project performs literature-based curation of the entire genome, and of transcriptional regulation, transporters, and metabolic pathways. The long-term goal of the project is to describe the molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists, and for biologists who work with related microorganisms.

Proper citation: EcoCyc (RRID:SCR_002433) Copy   


  • RRID:SCR_002702

https://simtk.org/home/allopathfinder

Software application and code base that allows users to compute likely allosteric pathways in proteins. The underlying assumption is that residues participating in allosteric communication should be fairly conserved and that communication happens through residues that are close in space. The initial application for the code provided was to study the allosteric communication in myosin. Myosin is a well-studied molecular motor protein that walks along actin filaments to achieve cellular tasks such as movement of cargo proteins. It couples ATP hydrolysis to highly-coordinated conformational changes that result in a power-stroke motion, or "walking" of myosin. Communication between a set of residues must link the three functional regions of myosin and transduce energy: the catalytic ATP binding region, the lever arm, and the actin-binding domain. They are investigating which residues are likely to participate in allosteric communication pathways. The application is a collection of C++/QT code, suitable for reproducing the computational results of the paper. (PMID 17900617) In addition, they provide input and alignment information to reproduce Figure 3 (a key figure) in the paper. Examples provided will show users how to use AlloPathFinder with other protein families, assumed to exhibit an allosteric communication. To run the application a multiple sequence alignment of representative proteins from the protein family is required along with at least one protein structure.

Proper citation: Allopathfinder (RRID:SCR_002702) Copy   


http://sonorus.princeton.edu/hefalmp/

HEFalMp (Human Experimental/FunctionAL MaPper) is a tool developed by Curtis Huttenhower in Olga Troyanskaya's lab at Princeton University. It was created to allow interactive exploration of functional maps. Functional mapping analyzes portions of these networks related to user-specified groups of genes and biological processes and displays the results as probabilities (for individual genes), functional association p-values (for groups of genes), or graphically (as an interaction network). HEFalMp contains information from roughly 15,000 microarray conditions, over 15,000 publications on genetic and physical protein interactions, and several types of DNA and protein sequence analyses and allows the exploration of over 200 H. sapiens process-specific functional relationship networks, including a global, process-independent network capturing the most general functional relationships. Looking to download functional maps? Keep an eye on the bottom of each page of results: every functional map of any kind is generated with a Download link at the bottom right. Most functional maps are provided as tab-delimited text to simplify downstream processing; graphical interaction networks are provided as Support Vector Graphics files, which can be viewed using the Adobe Viewer, any recent version of Firefox, or the excellent open source Inkscape tool.

Proper citation: Human Experimental/FunctionAL MaPper: Providing Functional Maps of the Human Genome (RRID:SCR_003506) Copy   


http://www.lipidmaps.org/data/proteome/LMPD.php

Database of lipid related proteins representing human and mouse proteins involved in lipid metabolism. Collection of lipid related genes and proteins contains data for genes and proteins from Homo sapiens, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae, Caenorhabditis elegans, Escherichia coli, Macaca mulata, Drosophila melanogaster, Arabidopsis thaliana and Danio rerio.

Proper citation: LIPID MAPS Proteome Database (RRID:SCR_003062) Copy   


  • RRID:SCR_018562

    This resource has 10+ mentions.

https://sourceforge.net/projects/saint-apms/files/

Software tool for upgraded implementation of probabilistic scoring of affinity purification mass spectrometry data. Used for filtering high confidence interaction data from affinity purification mass spectrometry experiments. Used for assigning confidence scores to protein-protein interactions based on quantitative proteomics data in AP-MS experiments.

Proper citation: SAINTexpress (RRID:SCR_018562) Copy   


  • RRID:SCR_018541

    This resource has 10+ mentions.

http://www.pyrosetta.org/

Interactive Python based interface to Rosetta molecular modeling suite. Stand alone Python based implementation of Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using major Rosetta sampling and scoring functions.

Proper citation: PyRosetta (RRID:SCR_018541) Copy   


  • RRID:SCR_022270

    This resource has 1+ mentions.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149502/

Software for comprehensive quantitative measure of splicing impact of complete set of RNA 6-mer sequences by deep sequencing successfully spliced transcripts.

Proper citation: ESRseq score (RRID:SCR_022270) Copy   


https://faculty.chemistry.harvard.edu/shakhnovich/software/coarse-grained-co-translational-folding-analysis

Software for statistical approach to identify loci within genes that are both significantly enriched in slowly translated codons and evolutionarily conserved, and also co-translational protein folding model.

Proper citation: Coarse grained co-translational folding analysis (RRID:SCR_022271) Copy   


https://psbweb05.psb.ugent.be/conet/microbialnetworks/spieceasi.php

Software R package estimates inverse covariance matrix from sequencing data.Statistical method for inference of microbial ecological networks from amplicon sequencing datasets.

Proper citation: Sparse Inverse Covariance Estimation for Ecological Association Inference (RRID:SCR_022646) Copy   


https://cran.r-project.org/web/packages/BGLR/

Software R package implements large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures.

Proper citation: Bayesian Generalized Linear Regression (RRID:SCR_022522) Copy   


  • RRID:SCR_023697

    This resource has 50+ mentions.

https://github.com/rondolab/MR-PRESSO

Software R package for performing Mendelian randomization pleiotropy residual sum and outlier method.Used to identify horizontal pleiotropic outliers in multi instrument summary level MR testing.

Proper citation: MR-PRESSO (RRID:SCR_023697) Copy   


http://panomics.pnnl.gov/

Biomedical technology research center that develops and integrates new proteomic technologies for collaborative and service studies, disseminating the new technologies and training scientists in their use.

Proper citation: Proteomics Research Center for Integrative Biology (RRID:SCR_001098) Copy   


http://www.cgl.ucsf.edu/

Biomedical technology resource center that develops software and web-based resources for the visualization and analysis of molecular structure, and related data, at scales ranging from the atomic to the supramolecular. They create tools for handling and integrating diverse types of biomolecular data, including atomic-resolution coordinates, density maps, sequences, annotations, and networks. Their primary efforts are in the visualization and analysis of structures of molecules and molecular assemblies, enzyme sequence-structure-function relationships, and network representations of protein similarity, binding interactions, and biological pathways. They provide technologies to enable identifying the molecular bases of disease and phenotypic variation, annotating proteins of unknown function, identifying targets for drug development, designing drugs, and engineering proteins with new functions. RBVI distributes software tools, including the popular UCSF Chimera visualization and analysis package, develops and hosts the Structure-Function Linkage Database, and provides access to state-of-the-art computational resources in support of research projects in these areas.

Proper citation: Resource for Biocomputing Visualization and Informatics (RRID:SCR_001374) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X