Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 19 showing 361 ~ 380 out of 795 results
Snippet view Table view Download 795 Result(s)
Click the to add this resource to a Collection

https://www.drugabuse.gov/publications/drugfacts/genetics-epigenetics-addiction

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. An archived video on the web providing comprehensive and hands-on training in genetics and epigenetic methodology. The purpose of the course is to provide an introduction to approaches and tools for identifying genes that confer vulnerability to addiction and individual differences in responses to treatments. The course is targeted to those who are new to the field of addiction genetics. The course was held over 5 days with lectures and hands-on demonstrations given each day. Viewers of the course will gain familiarity with conceptual and practical approaches to complex disorders using relevant genetic and epigenetic databases, and appropriate statistical and empirical approaches. Topics covered Behavioral genetics, genetic epidemiology, twin and adoption studies, statistical genetic concepts and approaches for mapping complex traits, haplotype based approaches for association mapping, genome-wide scans for addictive disorders, application of linkage for mapping genes and genetic loci for addictive disorders, pharmacogenomics of treatment of addictive disorders, Baysian Methods for identifying gene-gene interactions, analysis of copy number variation, practical use of genetic databases, mapping of complex traits in mice, methods for analyzing gene expression, and methods for doing epigenetic analysis are covered. The course was held April 4, 2008, at the Bethesda North Marriott Hotel and Conference Center, 5701 Marinelli Road, Bethesda, MD 20852.

Proper citation: Short Course on the Genetics and Epigenetics of Addiction National Institute on Drug Abuse: Archived Video (RRID:SCR_002783) Copy   


https://www.ddbj.nig.ac.jp/jga/index-e.html

A service for permanent archiving and sharing of all types of personally identifiable genetic and phenotypic data resulting from biomedical research projects. The JGA contains exclusive data collected from individuals whose consent agreements authorize data release only for specific research use or to bona fide researchers. Strict protocols govern how information is managed, stored and distributed by the JGA. Once processed, all data are encrypted. The JGA accepts only de-identified data approved by JST-NBDC. The JGA implements access-granting policy whereby the decisions of who will be granted access to the data resides with the JST-NBDC. After data submission the JGA team will process the data into databases and archive the original data files. The accepted data types include manufacturer-specific raw data formats from the array-based and new sequencing platforms. The processed data such as the genotype and structural variants or any summary level statistical analyses from the original study authors are stored in databases. The JGA also accepts and distributes any phenotype data associated with the samples. For other human biological data, please contact the NBDC human data ethical committee.

Proper citation: Japanese Genotype-phenotype Archive (JGA) (RRID:SCR_003118) Copy   


http://www.genome.gov/Glossary/

Glossary of Genetic Terms to help everyone understand the terms and concepts used in genetic research. In addition to definitions, specialists in the field of genetics share their descriptions of terms, and many terms include images, animation and links to related terms.

Proper citation: Talking Glossary of Genetic Terms (RRID:SCR_003215) Copy   


  • RRID:SCR_013133

    This resource has 10+ mentions.

http://bioinformatics.ust.hk/BOOST.html

Software application (entry from Genetic Analysis Software) for a method for detecting gene-gene interactions. It allows examining all pairwise interactions in genome-wide case-control studies.

Proper citation: BOOST (RRID:SCR_013133) Copy   


http://www.i2b2.org

i2b2 (Informatics for Integrating Biology and the Bedside) is an NIH-funded National Center for Biomedical Computing based at Partners HealthCare System. The i2b2 Center is developing a scalable informatics framework that will enable clinical researchers to use existing clinical data for discovery research and, when combined with IRB-approved genomic data, facilitate the design of targeted therapies for individual patients with diseases having genetic origin. For some resources (e.g. software) the use of the resource requires accepting a specific (e.g. OpenSource) license.

Proper citation: Informatics for Integrating Biology and the Bedside (RRID:SCR_013629) Copy   


http://www.nitrc.org/projects/nusdast

A repository of schizophrenia neuroimaging data collected from over 450 individuals with schizophrenia, healthy controls and their respective siblings, most with 2-year longitudinal follow-up. The data include neuroimaging data, cognitive data, clinical data, and genetic data.

Proper citation: Northwestern University Schizophrenia Data and Software Tool (NUSDAST) (RRID:SCR_014153) Copy   


http://cerebrovascularportal.org

Portal enables browsing, searching, and analysis of human genetic information linked to cerebrovascular disease and related traits, while protecting the integrity and confidentiality of the underlying data.

Proper citation: Cerebrovascular Disease Knowledge Portal (RRID:SCR_015628) Copy   


https://bdsc.indiana.edu/

Collects, maintains and distributes Drosophila melanogaster strains for research. Emphasis is placed on genetic tools that are useful to a broad range of investigations. These include basic stocks of flies used in genetic analysis such as marker, balancer, mapping, and transposon-tagging strains; mutant alleles of identified genes, including a large set of transposable element insertion alleles; defined sets of deficiencies and a variety of other chromosomal aberrations; engineered lines for somatic and germline clonal analysis; GAL4 and UAS lines for targeted gene expression; enhancer trap and lacZ-reporter strains with defined expression patterns for marking tissues; and a collection of transposon-induced lethal mutations.

Proper citation: Bloomington Drosophila Stock Center (RRID:SCR_006457) Copy   


http://scicrunch.org

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2019.

Database for those interested in the consequences of Factor VIII genetic variation at the DNA and protein level, it provides access to data on the molecular pathology of haemophilia A. The database presents a review of the structure and function of factor VIII and the molecular genetics of haemophilia A, a real time update of the biostatistics of each parameter in the database, a molecular model of the A1, A2 and A3 domains of the factor VIII protein (based on the crystal structure of caeruloplasmin) and a bulletin board for discussion of issues in the molecular biology of factor VIII. The database is completely updated with easy submission of point mutations, deletions and insertions via e-mail of custom-designed forms. A methods section devoted to mutation detection is available, highlighting issues such as choice of technique and PCR primer sequences. The FVIII structure section now includes a download of a FVIII A domain homology model in Protein Data Bank format and a multiple alignment of the FVIII amino-acid sequences from four species (human, murine, porcine and canine) in addition to the virtual reality simulations, secondary structural data and FVIII animation already available. Finally, to aid navigation across this site, a clickable roadmap of the main features provides easy access to the page desired. Their intention is that continued development and updating of the site shall provide workers in the fields of molecular and structural biology with a one-stop resource site to facilitate FVIII research and education. To submit your mutants to the Haemophilia A Mutation Database email the details. (Refer to Submission Guidelines)

Proper citation: HAMSTeRS - The Haemophilia A Mutation Structure Test and Resource Site (RRID:SCR_006883) Copy   


http://knightadrc.wustl.edu/

The Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) supports researchers and our surrounding community in their pursuit of answers that will lead to improved diagnosis and care for persons with Alzheimer disease (AD). The Center is committed to the long-term goal of finding a way to effectively treat and prevent AD. The Knight ADRC facilitates advanced research on the clinical, genetic, neuropathological, neuroanatomical, biomedical, psychosocial, and neuropsychological aspects of Alzheimer disease, as well as other related brain disorders.

Proper citation: Washington University School of Medicine Knight Alzheimers Disease Research Center (RRID:SCR_000210) Copy   


  • RRID:SCR_001251

    This resource has 10+ mentions.

http://www.bioconductor.org/packages/release/bioc/html/CGEN.html

Software R package for analysis of case-control studies in genetic epidemiology.

Proper citation: CGEN (RRID:SCR_001251) Copy   


  • RRID:SCR_001378

    This resource has 1+ mentions.

http://www.morpholinodatabase.org/

Central database to house data on morpholino screens currently containing over 700 morpholinos including control and multiple morpholinos against the same target. A publicly accessible sequence-based search opens this database for morpholinos against a particular target for the zebrafish community. Morpholino Screens: They set out to identify all cotranslationally translocated genes in the zebrafish genome (Secretome/CTT-ome). Morpholinos were designed against putative secreted/CTT targets and injected into 1-4 cell stage zebrafish embryos. The embryos were observed over a 5 day period for defects in several different systems. The first screen examined 184 gene targets of which 26 demonstrated defects of interest (Pickart et al. 2006). A collaboration with the Verfaillie laboratory examined the knockdown of targets identified in a comparative microarray analysis of hematopoietic stem cells demonstrating how microarray and morpholino technologies can be used in conjunction to enrich for defects in specific developmental processes. Currently, many collaborations are underway to identify genes involved in morphological, kidney, skin, eye, pigment, vascular and hematopoietic development, lipid metabolism and more. The screen types referred to in the search functions are the specific areas of development that were examined during the various screens, which include behavior, general morphology, pigmentation, toxicity, Pax2 expression, and development of the craniofacial structures, eyes, kidneys, pituitary, and skin. Only data pertaining to specific tests performed are presented. Due to the complexity of this international collaboration and time constraints, not all morpholinos were subjected to all screen types. They are currently expanding public access to the database. In the future we will provide: * Mortality curves and dose range for each morpholino * Preliminary data regarding the effectiveness of each morpholino * Expanded annotation for each morpholino * External linkage of our morpholino sequences to ZFIN and Ensembl. To submit morpholino-knockdown results to MODB please contact the administrator for a user name and password.

Proper citation: Morpholino Database (RRID:SCR_001378) Copy   


http://www.genome.jp/kegg/expression/

Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.

Proper citation: Kyoto Encyclopedia of Genes and Genomes Expression Database (RRID:SCR_001120) Copy   


  • RRID:SCR_001587

http://neuronalarchitects.com/ibiofind.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 17, 2016. C#.NET 4.0 WPF / OWL / REST / JSON / SPARQL multi-threaded, parallel desktop application enables the construction of biomedical knowledge through PubMed, ScienceDirect, EndNote and NIH Grant repositories for tracking the work of medical researchers for ranking and recommendations. Users can crawl web sites, build latent semantic indices to generate literature searches for both Clinical Translation Science Award and non-CTSA institutions, examine publications, build Bayesian networks for neural correlates, gene to gene interactions, protein to protein interactions and as well drug treatment hypotheses. Furthermore, one can easily access potential researcher information, monitor and evolve their networks and search for possible collaborators and software tools for creating biomedical informatics products. The application is designed to work with the ModelMaker, R, Neural Maestro, Lucene, EndNote and MindGenius applications to improve the quality and quantity of medical research. iBIOFind interfaces with both eNeoTutor and ModelMaker 2013 Web Services Implementation in .NET for eNeoTutor to aid instructors to build neuroscience courses as well as rare diseases. Added: Rare Disease Explorer: The Visualization of Rare Disease, Gene and Protein Networks application module. Cinematics for the Image Finder from Yale. The ability to automatically generate and update websites for rare diseases. Cytoscape integration for the construction and visualization of pathways for Molecular targets of Model Organisms. Productivity metrics for medical researchers in rare diseases. iBIOFind 2013 database now includes over 150 medical schools in the US along with Clinical Translational Science Award Institutions for the generation of biomedical knowledge, biomedical informatics and Researcher Profiles.

Proper citation: iBIOFind (RRID:SCR_001587) Copy   


http://www.norcomm.org/index.htm

Large-scale research initiative focused on developing and distributing a library of mouse embryonic stem (ES) cell lines carrying single gene trapped or targeted mutations across the mouse genome. NorCOMM's large and growing archive of ES cells is publicly available on a cost-recovery basis from the Canadian Mouse Mutant Repository. As an international public resource, access to clones is unrestricted and nonexclusive. Through NorCOMM's affiliation with the Canadian Mouse Consortium (CMC), NorCOMM also provides clients with a single point of access to regional mouse derivation, phenotyping, genetic and archiving services across Canada. These value-added services can help your company harness NorCOMM's resources for drug discovery, target discovery and preclinical validation.

Proper citation: North American Conditional Mouse Mutagenesis Project (RRID:SCR_001614) Copy   


  • RRID:SCR_001757

    This resource has 10000+ mentions.

Issue

http://www.nitrc.org/projects/plink

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

Proper citation: PLINK (RRID:SCR_001757) Copy   


http://icahn.mssm.edu/research/resources/shared-resource-facilities/in-vivo-molecular-imaging

The In-Vivo Molecular Imaging Laboratory (IMIL) is a MSSM shared resource facility serving the research community of Mount Sinai with equipment and imaging expertise. State-of-the-art bioluminescent as well as fluorescent imaging modalities are supported for in-vivo monitoring of cellular and genetic activity. Investigators are provided with cutting edge imaging technologies as well as analysis techniques. The long-term goal is to establish a comprehensive SRF for in-vivo molecular imaging using micro-MRI, micro-PET and other modalities. IMIL houses a Xenogen IVIS-200 Series imaging system with the integrated fluorescent imaging options. Simultaneous dual reporter in-vivo imaging is possible with bioluminescence and fluorescence probes. The imaging chamber has a gas anesthesia manifold that can accommodate up to 5 mice for simultaneously image acquisition. Selectable field of views allow in-plane (X,Y) imaging resolutions of up to 60-microm. Integrated spectra filters allow for the determination of signal source depth (Z). IMIL will provide data acquisition services as well as analysis. IMIL has a dedicated imaging technologist for data acquisition. Investigators will bring their prepared animal to the lab and an IMIL imaging technologist will assist in sedating the animals and acquire imaging data. Typical imaging sessions last about an hour. Certified users who are trained in the use of the software will be able to perform their own analysis at the console. Usage of the imaging device is charged by the hour ($100/hour). Structural Imaging The IVIS-200 has the built-in capability of obtaining an image of the surface topography of the animal for 2D and 3D localization. If additional true 3D imaging data is required, micro MRI is available through the Imaging Science Laboratories (ISL). Image Analysis The IVIS-200 has an integrated image acquisition and analysis software (Living Image Software 2.50). Comprehensive data quantification is possible with this software. Raw data as well as analyzed results can be electronically transferred to the investigators. Support is also available for additional image analysis such as intermodality coregistration, 3D rendering, and group statistics. Additional software packages include MedX, SPM, Brainvoyager, Analyze, and in-house developed software.

Proper citation: Mount Sinai School of Medicine: In-Vivo Molecular Imaging Laboratory (RRID:SCR_001785) Copy   


  • RRID:SCR_002142

    This resource has 500+ mentions.

https://www.snpstats.net/

A web-based application designed from a genetic epidemiology point of view to analyze association studies using single nucleotide polymorphisms (SNPs). For each selected SNP, you will receive: * Allele and genotype frequencies * Test for Hardy-Weinberg equilibrium * Analysis of association with a response variable based on linear or logistic regression * Multiple inheritance models: co-dominant, dominant, recessive, over-dominant and additive * Analysis of interactions (gene-gene or gene-environment) If multiple SNPs are selected: * Linkage disequilibrium statistics * Haplotype frequency estimation * Analysis of association of haplotypes with the response * Analysis of interactions (haplotypes-covariate)

Proper citation: SNPSTATS (RRID:SCR_002142) Copy   


http://ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019.BGMUT was database that provided publicly accessible platform for DNA sequences and curated set of blood mutation information. Data Archive are available at ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive.

Proper citation: Blood Group Antigen Gene Mutation Database (RRID:SCR_002297) Copy   


http://www.ark-genomics.org/

Portal for studies of genome structure and genetic variation, gene expression and gene function. Provides services including DNA sequencing of model and non-model genomes using both Next Generation and Sanger sequencing , Gene expression analysis using both microarrays and Next Generation Sequencing, High throughput genotyping of SNP and copy number variants, Data collection and analysis supported in-house high performance computing facilities and expertise, Extensive EST clone collections for a number of animal species, all of commercially available microarray tools from Affymetrix, Illumina, Agilent and Nimblegen, Parentage testing using microsatellites and smaller SNP panels. ARK-Genomics has developed network of researchers whom they support through each stage of their genomics research, from grant application, experimental design and technology selection, performing wet laboratory protocols, through to analysis of data often in conjunction with commercial partners.

Proper citation: ARK-Genomics: Centre for Functional Genomics (RRID:SCR_002214) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X