Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
THIS RESOURCE IS NO LONGER IN SERVICE. Documented August 23, 2017.
Annotated database of fluorescence microscope images depicting subcellular location proteins with two interfaces: a text and image content search interface, and a graphical interface for exploring location patterns grouped into Subcellular Location Trees. The annotations in PSLID provide a description of sample preparation and fluorescence microscope imaging.
Proper citation: Protein Subcellular Location Image Database (RRID:SCR_008663) Copy
Curated, relational database containing sequence, classification, structural, functional and evolutionary information about transport systems from variety of living organisms based on IUBMB-approved transporter classification (TC) system. Descriptions, TC numbers, and examples of over 600 families of transport proteins are provided. TC system is analogous to Enzyme Commission (EC) system for classification of enzymes, except that it incorporates both functional and phylogenetic information. TCDB users may submit their own sequenced proteins and descriptions for inclusion into database. The software tools used are all freely available for download. These programs are used for analysis of Protein and DNA sequences. Programs require UNIX server to run.
Proper citation: Transporter Classification Database (RRID:SCR_004490) Copy
System that classifies genes by their functions, using published scientific experimental evidence and evolutionary relationships to predict function even in absence of direct experimental evidence. Orthologs view is curated orthology relationships between genes for human, mouse, rat, fish, worm, and fly., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PANTHER (RRID:SCR_004869) Copy
An integrated text mining / natural language processing system based on the Unstructured Information Management Architecture (UIMA) Framework. It allows interoperability of text mining tools and allows the creation of text mining workflows, comparison and visualization of tools. U-Compare can be launched straight from the web or downloaded. As the name implies comparison of components and workflows is a central feature of the system. U-Compare allows sets of components to be run in parallel on the same inputs and then automatically generates statistics for all possible combinations of these components. Once a workflow has been created in U-Compare it can be exported and shared with other users or used with other UIMA compatible tools and so in addition to comparison, U-Compare also functions as a general purpose workflow creation tool. It contains a repository of 50+ biomedical text mining components. These components are included in the U-Compare single-click-to-launch package, ready to use by just drag-and-drop. You can also use this repository independent from the U-Compare system. Link with Taverna It has a link with Taverna for scientific workflows, http://bioinformatics.oxfordjournals.org/content/26/19/2486.abstract, where you can use U-Compare and its workflow from within the Taverna workflow. There are two ways, the U-Compare Taverna plugin and the U-Compare command line mode as a Taverna activity. We have recently integrated it with Peter Murray-Rust''''s OSCAR for Chemistry (see http://www.nactem.ac.uk/cheta/) Web Demo: http://www.nactem.ac.uk/software/cheta/
Proper citation: U-Compare (RRID:SCR_004911) Copy
http://ccb.jhu.edu/software/FLASH/
Open source software tool to merge paired-end reads from next-generation sequencing experiments. Designed to merge pairs of reads when original DNA fragments are shorter than twice length of reads. Can improve genome assemblies and transcriptome assembly by merging RNA-seq data.
Proper citation: FLASH (RRID:SCR_005531) Copy
http://mus.well.ox.ac.uk/gscandb/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Database / display tool of genome scans, with a web interface that lets the user view the data. It does not perform any analyses - these must be done by other software, and the results uploaded into it. The basic features of GSCANDB are: * Parallel viewing of scans for multiple phenotypes. * Parallel analyses of the same scan data. * Genome-wide views of genome scans * Chromosomal region views, with zooming * Gene and SNP Annotation is shown at high zoom levels * Haplotype block structure viewing * The positions of known Trait Loci can be overlayed and queried. * Links to Ensembl, MGI, NCBI, UCSC and other genome data browsers. In GSCANDB, a genome scan has a wide definition, including not only the usual statistical genetic measures of association between genetic variation at a series of loci and variation in a phenotype, but any quantitative measure that varies along the genome. This includes for example competitive genome hybridization data and some kinds of gene expression measurements.
Proper citation: WTCHG Genome Scan Viewer (RRID:SCR_001635) Copy
http://sonorus.princeton.edu/hefalmp/
HEFalMp (Human Experimental/FunctionAL MaPper) is a tool developed by Curtis Huttenhower in Olga Troyanskaya's lab at Princeton University. It was created to allow interactive exploration of functional maps. Functional mapping analyzes portions of these networks related to user-specified groups of genes and biological processes and displays the results as probabilities (for individual genes), functional association p-values (for groups of genes), or graphically (as an interaction network). HEFalMp contains information from roughly 15,000 microarray conditions, over 15,000 publications on genetic and physical protein interactions, and several types of DNA and protein sequence analyses and allows the exploration of over 200 H. sapiens process-specific functional relationship networks, including a global, process-independent network capturing the most general functional relationships. Looking to download functional maps? Keep an eye on the bottom of each page of results: every functional map of any kind is generated with a Download link at the bottom right. Most functional maps are provided as tab-delimited text to simplify downstream processing; graphical interaction networks are provided as Support Vector Graphics files, which can be viewed using the Adobe Viewer, any recent version of Firefox, or the excellent open source Inkscape tool.
Proper citation: Human Experimental/FunctionAL MaPper: Providing Functional Maps of the Human Genome (RRID:SCR_003506) Copy
PILGRM (the platform for interactive learning by genomics results mining) puts advanced supervised analysis techniques applied to enormous gene expression compendia into the hands of bench biologists. This flexible system empowers its users to answer diverse biological questions that are often outside of the scope of common databases in a data-driven manner. This capability allows domain experts to quickly and easily generate hypotheses about biological processes, tissues or diseases of interest. Specifically PILGRM helps biologists generate these hypotheses by analyzing the expression levels of known relevant genes in large compendia of microarray data. PILGRM is for the biologist with a set of proteins relevant to a disease, biological function or tissue of interest who wants to find additional players in that process. It uses a data driven method that provides added value for literature search results by mining compendia of publicly available gene expression datasets using lists of relevant and irrelevant genes (standards). PILGRM produces publication quality PDFs usable as supplementary material to describe the computational approach, standards and datasets. Each PILGRM analysis starts with an important biological question (e.g. What genes are relevant for breast cancer but not mammary tissue in general?). For PILGRM to discover relevant genes, it needs examples of both genes that you would (positive) and would not (negative) find interesting. Lists of these genes are what we call standards and in PILGRM you can build your own standards or you can use standards from common sources that we pre-load for your convenience. PILGRM lets you build your own literature-documented standards so that processes, disease, and tissues that are not well covered in databases of tissue expression, disease, or function can still be used for an analysis.
Proper citation: PILGRM (RRID:SCR_004749) Copy
http://biomedicalcomputationreview.org
Magazine published by Simbios, a National NIH Center for Biomedical Computing, covering the latest research wherever computation, biology, and medicine intersect. In addition to disseminating information about the latest research in biomedical computation, they aim to foster community amongst the wide audience interested in any and all aspects of biomedical computing. Whether you are a long time researcher in this area or new to it, please consider joining those who have already started to participate in Biomedical Computation Review. You are encouraged to: * Write a letter to the editor on any relevant topics * Suggest your favorite topics that should receive more attention * Suggest an idea for a feature article * Propose an idea for an Under the Hood tutorial * Tell us any other way in which we can better serve this community
Proper citation: Biomedical Computation Review (RRID:SCR_004866) Copy
http://www.sci.utah.edu/cibc-software/scirun.html
A Problem Solving Environment (PSE) for modeling, simulation and visualization of scientific problems. SCIRun now includes the biomedical components formally released as BioPSE, as well as BioMesh3D. BioMesh3D is a free, easy to use program for generating quality meshes for the use in biological simulations. The most recent stable release is version 4.6.
Proper citation: SCIRun (RRID:SCR_002541) Copy
https://vanvalen.github.io/about/
Software for segmenting individual cells in microscopy images using deep learning. Cell segmentation software.
Proper citation: DeepCell (RRID:SCR_022197) Copy
http://simbios.stanford.edu/index.html
Simbios is the NIH Center for physics-based Simulation of Biological Structures. Simbios provides infrastructure, software, and training to help biomedical researchers understand biological form and function as they create novel drugs, synthetic tissues, medical devices, and surgical interventions. Simbios is investigating a wide scale of biological structures - from molecules to organisms. Driving biological problems include RNA folding, protein folding, myosin dynamics, cardiovascular dynamics, and neuromuscular biomechanics. Investigators interested in collaborating with Simbios can apply for NIH funding. To encourage collaboration in building accurate biological models and simulations, Simbios also provides the biomedical community with https://simtk.org, a free, secure, distributed, development system for projects. Projects may include models, software, data, documentation, publications, and graphics and have automatic backups and off-site storage. Projects may be public or private and have project-specific mailing lists, forums, bug & feature databases, news, blogs, and source-code repositories. Simbios is developing and disseminating the SimTK core simulation toolkit, (simtk.org/home/simtkcore). SimTK core is open-source software developed by experienced professionals. The software includes advanced capabilities for modeling the geometry and physics of biological systems. To ensure utility and accuracy, the software and training material is being developed and tested in close collaboration with biomedical scientists. Simbios has developed OpenSim, an application for advanced neuromuscular modeling that uses the SimTK toolkit, and is making it openly available at simtk.org/home/opensim. Simbios also publishes the Biomedical Computation Review, a magazine devoted to the science and tools in biocomputation, aimed at the community which encompasses the diverse biocomputation disciplines. To help researchers find high quality software and tools Simbios has also establishes the Simbiome an inventory of high-quality commercial and academic bio-simulation tools. Simbios has recurring openings for postdoctoral researchers.
Proper citation: Simbios (RRID:SCR_004320) Copy
Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.
Proper citation: ImageJ (RRID:SCR_003070) Copy
https://simtk.org/home/rna-viz-proto
A software application for animating and visualising RNA and other macromolecular structures. Users are able to use their intuition to interactively refold RNA structures and produce morphs from one structure to another. It allow researchers to explore and manipulate molecular structures Imported from BiositeMaps registry, to better understand structure:function relationships, folding pathways, and molecular motion.
Proper citation: ToRNADo (RRID:SCR_002706) Copy
https://www.proteinspire.org/MOPED/
An expanding multi-omics resource that enables rapid browsing of gene and protein expression information from publicly available studies on humans and model organisms. MOPED also serves the greater research community by enabling users to visualize their own expression data, compare it with existing studies, and share it with others via private accounts. MOPED uniquely provides gene and protein level expression data, meta-analysis capabilities and quantitative data from standardized analysis utilizing SPIRE (Systematic Protein Investigative Research Environment). Data can be queried for specific genes and proteins; browsed based on organism, tissue, localization and condition; and sorted by false discovery rate and expression. MOPED links to various gene, protein, and pathway databases, including GeneCards, Entrez, UniProt, KEGG and Reactome. The current version of MOPED (MOPED 2.5) The current version of MOPED (MOPED 2.5, 2014) contains approximately 5 million total records including ~260 experiments and ~390 conditions.
Proper citation: MOPED - Model Organism Protein Expression Database (RRID:SCR_006065) Copy
http://ecoliwiki.net/colipedia/index.php/Welcome_to_EcoliWiki
A component of EcoliHub, EcoliWiki is a wiki-based system for finding, editing, and adding information about E. coli K-12 and other model organism strains of E. coli. EcoliWiki is being constructed to include information about bacteriophage, plasmids, and mobile genetic elements. Information should be easily accessible and correct, and users have the right to edit any information they feel is incorrect. Most of the E. coli information was initially seeded with a subset of information from parsing EcoCyc data dumps. For phage gamma and the F plasmid, Genbank accessions were converted to GFF, which was parsed into the appropriate tables. Other sources of content include: * user additions * monthly addition of annotations from EcoCyc * structural data from the PDB * domains and motif information from InterPro * various databases including EcoGene, RegulonDB, Genbank, GenoBase, ASAP * many many scientific papers EcoliWiki participates in the RefGenome project. EcoliWiki provides REST web services as part of the EcoliHub Web Services infrastructure project.
Proper citation: EcoliWiki (RRID:SCR_010656) Copy
Web application and database designed for sharing, visualizing, and analyzing protein cross-linking mass spectrometry data with emphasis on structural analysis and quality control. Includes public and private data sharing capabilities, project based interface designed to ensure security and facilitate collaboration among multiple researchers. Used for private collaboration and public data dissemination.
Proper citation: Protein Cross-Linking Database (RRID:SCR_021027) Copy
https://crispresso.pinellolab.partners.org/submission
Software suite of tools to qualitatively and quantitatively evaluate outcomes of genome editing experiments in which target loci are subject to deep sequencing and provides integrated, user friendly interface. Used for analysis of CRISPR-Cas9 genome editing outcomes from sequencing data. CRISPResso2 provides accurate and rapid genome editing sequence analysis.Used for analysis of deep sequencing data for rapid and intuitive interpretation of genome editing experiments.
Proper citation: CRISPResso (RRID:SCR_021538) Copy
Biomedical technology research center and training resource that develops time-resolved laser technologies and instrumentation, with a focus on 2-D IR spectroscopy. The technologies enable atomic-level measurements of the fastest steps in biological processes to elucidate structure and dynamics in biological macromolecules, assemblies and cells. The Center makes most of its instrumentation available for service research projects to outside users nation-wide.
Proper citation: Ultrafast Optical Processes Laboratory (RRID:SCR_006582) Copy
Biomedical technology research center that develops new technologies for modeling cell biological processes. The technologies are integrated through Virtual Cell, a problem-solving environment built on a central database and disseminated as a Web application for the analysis, modeling and simulation of cell biological processes. NRCAM resides at the Center for Cell Analysis and Modeling, CCAM, and provides a vast array of laboratory equipment that can be used for obtaining experimental data needed to create and enhance Virtual Cell models. Microscopy instrumentation includes three confocal laser scanning microscopes including UV excitation, nonlinear optical microscopy utilizing a titanium sapphire pulsed laser, confocal-based fluorescence correlation spectroscopy, wide-field imaging workstation with cooled CCD and rapid excitation filter wheel, and dual-wavelength spectrofluorometer. Access to the facilities and technical staff is open to all researchers., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: NRCAM (RRID:SCR_006134) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.