Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.nitrc.org/projects/papaya
A pure JavaScript medical research image viewer, compatible across a range of popular web browsers. The orthogonal viewer supports NIFTI and DICOM files, overlays and atlas labels. It requires Firefox (7+), Chrome (7+), Safari (6+), MobileSafari (iOS 6+), or IE (10+).
Proper citation: Papaya (RRID:SCR_014188) Copy
http://www.nitrc.org/projects/efficient_pt
A Matlab implementation for efficient permutation testing by using matrix completion.
Proper citation: Efficient Permutation Testing (RRID:SCR_014104) Copy
http://www.nitrc.org/projects/ymdti/
A dataset which contains diffusion tensor images of 93 healthy, young male subjects.
Proper citation: YMDTI: Diffusion Tensor Images of Healthy Young Males (RRID:SCR_014183) Copy
http://www.nitrc.org/projects/hfh_t1_hp_seg1/
Shared dataset which consists of skull-stripped T1 MRI images and segmented hippocampi of 163 Temporal Lobe Epilepsy (TLE) patients. The T1 and hippocampal segmentation data of TLE patients are uploaded in three separate datasets which can be accessed from the main site.
Proper citation: Epilepsy T1 and Hippocampal Segmentation Datasets (RRID:SCR_014926) Copy
https://as.nyu.edu/research-centers/cbi/resources/Software.html
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. Software which converts DICOM images to NIfTI format.
Proper citation: dinifti (RRID:SCR_000303) Copy
http://www.sci.utah.edu/cibc/software/131-shapeworks.html
THIS RESOURCE IS NO LONGER IN SERVICE.Documented on September 2, 2022. Software that is an open-source distribution of a new method for constructing compact statistical point-based models of ensembles of similar shapes that does not rely on any specific surface parameterization. The method requires very little preprocessing or parameter tuning, and is applicable to a wide range of shape analysis problems, including nonmanifold surfaces and objects of arbitrary topology. The proposed correspondence point optimization uses an entropy-based minimization that balances the simplicity of the model (compactness) with the accuracy of the surface representations. The ShapeWorks software includes tools for preprocessing data, computing point-based shape models, and visualizing the results.
Proper citation: ShapeWorks (RRID:SCR_000424) Copy
http://www.nitrc.org/projects/cifti/
Standardizes file formats for the storage of connectivity data. These formats are developed by the Human Connectome Project and other interested parties. Use the MEDIAWIKI entry in the menu on the left for more information about the CIFTI file formats. Access the CIFTI discussion forum using the Forums entry in the menu on the left. Subscribe to the discussion forum and you will be informed about issues involving the CIFTI file formats via email.
Proper citation: CIFTI Connectivity File Format (RRID:SCR_000852) Copy
http://www.nitrc.org/projects/multimpute/
A software toolkit that performs multiple imputation for group level, single sample t-tests. Whole brain group level statistic maps from fMRI rarely cover the entire brain as a result of missing data. Missingness between subjects in fMRI datasets can result from susceptibility artifacts, bounding box (acquisition parameters), and small differences in post-normalized morphology. The toolkit consists of several interactive command line scripts that guide the user to map the spatial distribution of missing data across contrast images, calculate spatial neighborhood averages that help impute values, perform conventional and multiple imputed t-statistics, save the results to brain maps, and create result tables. The toolkit contains an instruction manual (pdf), two Matlab scripts and one R-Statistics script, which depend on functions defined in the popular SPM toolbox and functions defined in the MICE package for (R).
Proper citation: Group Level Imputation of Statistic Maps (RRID:SCR_002397) Copy
http://neuro.debian.net/pkgs/cmtk.html
A software toolkit for computational morphometry of biomedical images, CMTK comprises a set of command line tools and a back-end general-purpose library for processing and I/O. The command line tools primarily provide the following functionality: registration (affine and nonrigid; single and multi-channel; pairwise and groupwise), image correction (MR bias field estimation; interleaved image artifact correction; EPI unwarping), processing (filters; combination of segmentations via voting and STAPLE; shape-based averaging), statistics (t-tests; general linear model). CMTK is implemented in C++ with parallel processing using POSIX Threads (SMP), OpenMP (SMP), Grand Central Dispatch (SMP), and CUDA (GPU). Supported file formats include Analyze (r/w), NIFTI (r/w), Nrrd (r/w), DICOM (read), BioRad (read). Data exchange with other toolkits, such as ITK, FSL, AFNI, SPM, etc. is thus easily accomplished.
Proper citation: Computational Morphometry Toolkit (RRID:SCR_002234) Copy
http://www.nitrc.org/projects/rft_fdr/
So far there is a lack for Random Field Theory (RFT) -based multiple comparison correction for surfaces generated in Freesurfer software package. This set of Matlab-based functions can be used for that purpose. They are based on Worsley?s SurfStat toolbox. You also need to have installed Freesurfer software package and included the Freesurfer?s matlab subdirectory in the Matlab?s search path. In addition, this tool implements the RFT-FDR hierarchical correction that can be used for optimizing the amount of smoothing in cortical thickness analyses (Neuroimage 52, 158-171).
Proper citation: RFT FDR (RRID:SCR_002533) Copy
http://www.nitrc.org/projects/nirx2nirs/
A matlab script which takes near-infrared spectroscopy data recorded by NIRx system(s) and converts it to a .nirs file format for use with the HOMER2 NIRS processing pacakge.
Proper citation: NIRx2nirs: A NIRx to .nirs data converter (RRID:SCR_002492) Copy
http://www.mbfbioscience.com/stereo-investigator
Stereo Investigator system includes microscope, computer, and Stereo Investigator software. Software works with Brightfield, Multi-Channel Fluorescence, Confocal, and Structured Illumination Microscopes. System used to provide estimates of number, length, area, and volume of cells or biological structures in tissue specimen in areas of neuroscience including neurodegenerative diseases, neuropathy, memory, and behavior, pulmonary research, spinal cord research, and toxicology.
Proper citation: Stereo Investigator (RRID:SCR_002526) Copy
http://www.nitrc.org/projects/slicer3examples/
Example Slicer3 plugins that can be built against a Slicer3 build or a Slicer3 installation. Note: these are for 3D Slicer version 3. There is now a version 4 of 3D Slicer available. Information about extensions for version 4 can be found at the following links: http://www.slicer.org/slicerWiki/index.php/Documentation/Nightly/SlicerApplication/ExtensionsManager http://www.slicer.org/slicerWiki/index.php/Documentation/Nightly/Developers/Tutorials/BuildTestPackageDistributeExtensions
Proper citation: Slicer3 Example Modules (RRID:SCR_002559) Copy
http://imaging.indyrad.iupui.edu/projects/SPHARM/
A matlab-based 3D shape modeling and analysis toolkit, and is designed to aid statistical shape analysis for identifying morphometric changes in 3D structures of interest related to different conditions. SPHARM-MAT is implemented based on a powerful 3D Fourier surface representation method called SPHARM, which creates parametric surface models using spherical harmonics.
Proper citation: SPHARM-MAT (RRID:SCR_002545) Copy
This toolbox is an EEGLAB plugin for performing Measure Projection Analysis. Measure Projection Analysis (MPA) is a novel probabilistic multi-subject inference method that overcomes EEG Independent Component (IC) clustering issues by abandoning the notion of distinct IC clusters. Instead, it searches voxel by voxel for brain regions having event-related IC process dynamics that exhibit statistically significant consistency across subjects and/or sessions as quantified by the values of various EEG measures. Local-mean EEG measure values are then assigned to all such locations based on a probabilistic model of IC localization error and inter-subject anatomical and functional differences.
Proper citation: Measure Projection Toolbox (RRID:SCR_002429) Copy
https://sites.google.com/a/brain.org.au/ctp/
Software package with functions that will help researchers plan how many subjects per group need to be included in an MRI-based cortical thickness study to ensure a thickness difference is detected. The package requires cortical thickness mapping and co-registration to be carried out using Freesurfer. The power analyses are implemented in the R software package., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: cortex (RRID:SCR_002467) Copy
http://www.nitrc.org/projects/ukftractography/
Software framework which uses an unscented Kalman filter for performing tractography. At each point on the fiber the most consistent direction is found as a mixture of previous estimates and of the local model. It is very easy to expand the framework and to implement new fiber representations for it. Currently it is possible to tract fibers using two different 1-, 2-, or 3-tensor methods. Both methods use a mixture of Gaussian tensors. One limits the diffusion ellipsoids to a cylindrical shape (the second and third eigenvalue are assumed to be identical) and the other one uses a full tensor representation. The project is written in C++. It could be used both as a Slicer3 module and as a standalone commandline application.
Proper citation: Diffusion Tractography with Kalman Filter (RRID:SCR_002585) Copy
http://www.nitrc.org/projects/shape_mancova/
shapeAnalysisMANCOVA offers statistical shape analysis based on a parametric boundary description (SPHARM) as the point-based model computing method. The point-based models will be analyzed with the methods here proposed using multivariate analysis of covariance (MANCOVA). Here, the number of variates being tested is the dimensionality of our observations. Each point of these observations is a three dimensional displacement vector from the mean. The number of contrasts is the number of equations involved in the null-hypothesis. In order to encompass varying numbers of variates and contrasts, and to account for independent variables, a matrix computation is performed. This matrix represents the multidimensional aspects of the correlation significance and it can be transformed into a scalar measure by manipulation of its eigenvalues. Details of the methods can be found in its Insight Journal publication: http://hdl.handle.net/10380/3124
Proper citation: shapeAnalysisMANCOVA - SPHARM tools (RRID:SCR_002578) Copy
Software Python package for working with DICOM files, made for inspecting and modifying DICOM data in an easy pythonic way. The modifications can be written again to a new file. As a pure python package, it should run anywhere python runs without any other requirements.
Proper citation: pydicom (RRID:SCR_002573) Copy
http://www.egi.com/research-division-geodesic-system-components/eeg-software
A complete software package for working with electroencephalography (EEG) and event-related potential (ERP) data. You can acquire, review, analyze, and now ?see? your participant with synchronized video. Net Station also offers specialized tools and workflow options for both clinical and research applications, allows you to save different combinations of view settings (called workspaces) and helps with your reporting requirements by letting you set up and print custom cover pages. For more specialized work, Net Station also provides an optional electrical source estimation module (GeoSource) and an optional sensor location digitizer (Geodesic Photogrammetry System).
Proper citation: Net Station EEG Software (RRID:SCR_002453) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.