Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 18 showing 341 ~ 360 out of 795 results
Snippet view Table view Download 795 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_008366

    This resource has 1+ mentions.

http://www.jax.org/imr/index.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 08, 2012. The function of the IMR is to select, import, cryopreserve, maintain, and distribute these important strains of mice to the research community. To improve their value for research, the IMR also undertakes genetic development of stocks, such as transferring mutant genes or transgenes to defined genetic backgrounds and combining transgenes and/or targeted mutations to create new mouse models for research. The function of the IMR is to: * select biomedically important stocks of transgenic, chemically induced, and targeted mutant mice * import these stocks into the Jackson Laboratory by rederivation procedures that rid them of any pathogens they might carry * cryopreserve embryos from these stocks to protect them against accidental loss and genetic contamination * backcross the mutation onto an inbred strain, if necessary * distribute them to the scientific community More than 1000 mutant stocks have been accepted by the IMR from 1992 through December 2006. Current holdings include models for research on cancer; breast cancer; immunological and inflammatory diseases; neurological diseases; behavioral, cardiovascular and heart diseases; developmental, metabolic and other diseases; reporter (e.g., GFP) and recombinase (e.g., cre/loxP) strains. About eight strains a month are being added to the IMR holdings. Research is being conducted on improved methods for assisted reproduction and speed congenic production. Most of the targeted mutants arrive on a mixed 129xC57BL/6 genetic background, and as many of these as possible are backcrossed onto an inbred strain (usually C57BL/6J). In addition, new mouse models are being created by intercrossing carriers of specific transgenes and/or targeted mutations. Simple sequence length polymorphism DNA markers are being used to characterize and evaluate differences between inbred strains, substrains, and embryonic stem cell lines.

Proper citation: Induced Mutant Resource (RRID:SCR_008366) Copy   


http://www.oege.org/software/hwe-mr-calc.shtml

This portal leads to the Chi-sq Hardy-Weinberg equilibrium test calculator for biallelic markers (SNPs, indels etc), including analysis for ascertainment bias for dominant/recessive models (due to biological or technical causes.) The purpose of this web program is for estimating possible missingness and an approach to evaluating missingness under different genetic models. Mendelian randomization (MR) permits causal inference between exposures and a disease. It can be compared with randomized controlled trials. Whereas in a randomized controlled trial the randomization occurs at entry into the trial, in MR the randomization occurs during gamete formation and conception. Several factors, including time since conception and sampling variation, are relevant to the interpretation of an MR test. Particularly important is consideration of the missingness of genotypes that can be originated by chance, genotyping errors, or clinical ascertainment. Testing for Hardy-Weinberg equilibrium (HWE) is a genetic approach that permits evaluation of missingness. Through this tool, the authors demonstrate evidence of nonconformity with HWE in real data. They also perform simulations to characterize the sensitivity of HWE tests to missingness. Unresolved missingness could lead to a false rejection of causality in an MR investigation of trait-disease association. These results indicate that large-scale studies, very high quality genotyping data, and detailed knowledge of the life-course genetics of the alleles/genotypes studied will largely mitigate this risk. Sponsors: This resource is supported by an Intermediate Fellowship (grant FS/05/065/19497) from the British Heart Foundation.

Proper citation: Hardy-Weinberg Equilibrium Calculator (RRID:SCR_008371) Copy   


  • RRID:SCR_008154

    This resource has 1+ mentions.

http://ncv.unl.edu/Angelettilab/HPV/Database.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.

Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy   


http://www.animalgenome.org/pigs/nagrp.html

Database and resources on the pig genome.

Proper citation: U.S. Pig Genome Project (RRID:SCR_008151) Copy   


http://csgr.pgml.uga.edu/

The objective of this project is to develop physical maps of the sorghum and rice genomes, based on BAC contigs that are cross-linked to each other and also to genetic maps and BAC islands for other large-genome crops and a library of ca. 50,000 expressed-sequence tags (EST''s) and corresponding cDNA clones, from diverse sorghum organs and developmental states. It also aims to improve understanding of genetic diversity and allelic richness that might be harbored ex situ (in gene banks) or in situ (in nature), and refine techniques for assesing allelic richness and Expedite data acquisition and utilization by a sound parnership between laboratory scientists and computational biologists. Specific goals of developing physical maps of sorghum and rice genomes include: -Enrich cross-links between sorghum and rice by mapping additional rice probes on sorghum. -Apply mapped DNA probes to macroarrays of sorghum, sugarcane, rice, and maize BACs. -Fingerprint 10x BAC libraries of Sorghum bicolor and S. propinquum. Libraries presently 3x and 6x respectively, to be expanded to 10x each. -Use fragment-matching (BAC-RF) method to determine locus-specificity in polyploids. - Contig assembly based on 1-3, plus rice BAC fingerprints generated under a separate Novartis project. -Evaluate methodology for rapid high-throughput assignment of new ESTs to BACs. -Conduct genomic sequencing in a region duplicated in both sorghum and arabidopsis. Selected BACs from sorghum(2), sugarcane, maize, rice, wheat. By improving the understanding of genetic diversity and allelic richness, the goal is to: -Sequence previously mapped sorghum DNA probes. -Discover & characterize 100 single nucleotide polymorphisms (SNPs) from cDNA markers. -Develop colorimetric high-throughput genotyping assays, and utilize to assess genetic diversity in geographically- and phenotypically-diverse sorghums. -Develop colorimetric high-throughput asssays for identifying phytochrome allelic variation, and apply these assays to a core collection representing a large set of genetic resources. -Support informatics group to streamline cataloging of DNA-level information relevant to large genetic resources collections. Lastly, the goals of expediting data acquisition and utilization include: -A new web-based resource for 3D-integration and visualization of structural and functional genomic data will be developed. -New sequence assembly and alignment software SABER (Sequence AssemBly in the presence of ERror), and PRIMAL(Practical RIgorous Multiple ALignment), will be evaluated with reference to existing standards (PHRED, PHRAP). -Specialized image processing and image analysis tools will be developed for acquistion and interpretation of qualitative and quantitative hybridization signals. To deal expeditiously with large volumes of data, parallel processing approaches will be investigated. Sponsors: * National Science Foundation (NSF) * National Sorghum Producers * University of Georgia Research Foundation (UGARF) * Georgia Research Alliance (GRA)

Proper citation: Comparative Saccharinae Genomics Resource (RRID:SCR_008153) Copy   


http://cprc.rcm.upr.edu/

Center for the study of non-human primates. Its mission is the study and use of non-human primates as models for studies of social and biological interactions and for the discovery of methods of prevention, diagnosis and treatment of diseases that afflict humans. Through the stewardship of three unique facilities—Cayo Santiago Field Station, Sabana Seca Field Station, and the Laboratory of Primate Morphology supports a diverse range of research programs that enhance understanding of primate biology and behavior, with direct applications in biomedical and translational research.

Proper citation: Caribbean Primate Research Center (RRID:SCR_008345) Copy   


  • RRID:SCR_008183

    This resource has 1+ mentions.

http://genewindow.nci.nih.gov/

Software tool for pre- and post-genetic bioinformatics and analytical work, developed and used at the Core Genotyping Facility (CGF) at the National Cancer Institute. While Genewindow is implemented for the human genome and integrated with the CGF laboratory data, it stands as a useful tool to assist investigators in the selection of variants for study in vitro, or in novel genetic association studies. The Genewindow application and source code is publicly available for use in other genomes, and can be integrated with the analysis, storage, and archiving of data generated in any laboratory setting. This can assist laboratories in the choice and tracking of information related to genetic annotations, including variations and genomic positions. Features of GeneWindow include: -Intuitive representation of genomic variation using advanced web-based graphics (SVG) -Search by HUGO gene symbol, dbSNP ID, internal CGF polymorphism ID, or chromosome coordinates -Gene-centric display (only when a gene of interest is in view) oriented 5 to 3 regardless of the reference strand and adjacent genes -Two views, a Locus Overview, which varies in size depending on the gene or genomic region being viewed and, below it, a Sequence View displaying 2000 base pairs within the overview -Navigate the genome by clicking along the gene in the Locus Overview to change the Sequence View, expand or contract the genomic interval, or shift the view in the 5 or 3 direction (relative to the current gene) -Lists of available genomic features -Search for sequence matches in the Locus Overview -Genomic features are represented by shape, color and opacity with contextual information visible when the user moves over or clicks on a feature -Administrators can insert newly-discovered polymorphisms into the Genewindow database by entering annotations directly through the GUI -Integration with a Laboratory Information Management System (LIMS) or other databases is possible

Proper citation: GeneWindow (RRID:SCR_008183) Copy   


http://www.snprc.org/

Center that supports studies of nonhuman primate models of human diseases, including common chronic diseases and infectious diseases and the effects that genetics and the environment have on physiological processes and disease susceptibility. SNPRC encourages the use of its resources by investigators from the national and international biomedical research communities.

Proper citation: Southwest National Primate Research Center (RRID:SCR_008292) Copy   


  • RRID:SCR_008445

    This resource has 10+ mentions.

http://cgems.cancer.gov

The project began as a pilot study to identify inherited genetic susceptibility to prostate and breast cancer. CGEMS has developed into a robust research program involving genome-wide association studies (GWASs) for a number of cancers to identify common genetic variants that affect a person''s risk of developing cancer. In collaboration with extramural scientists, NCI''s Division of Cancer Epidemiology and Genetics (DCEG) has carried out genome-wide scans for breast, prostate, pancreatic, and lung cancers, while a GWAS of bladder cancer is currently underway. By making the data available to both intramural and extramural research scientists, as well as those in the private sector through rapid posting, NIH can leverage its resources to ensure that the dramatic advances in genomics are incorporated into rigorous population-based studies. Ultimately, findings from these studies may yield new preventive, diagnostic, and therapeutic interventions for cancer. Sponsors: This resource is supported by the U.S. National Institues Of Health.

Proper citation: CGEMS (RRID:SCR_008445) Copy   


  • RRID:SCR_009234

    This resource has 1+ mentions.

http://www.hapsample.org/

Web application for simulating SNP genotypes for case-control and affected-child trio studies by resampling from Phase I/II HapMap SNP data. The user provides a list of SNPs to be genotyped, along with a disease model file that describes causal SNPs and their effect sizes. The simulation tool is appropriate for candidate regions or whole-genome scans. (entry from Genetic Analysis Software)

Proper citation: HAP-SAMPLE (RRID:SCR_009234) Copy   


  • RRID:SCR_009375

    This resource has 1+ mentions.

http://pages.stat.wisc.edu/~yandell/qtl/software/qtlbim/

Software library for QTL Bayesian Interval Mapping that provides a Bayesian model selection approach to map multiple interacting QTL. It works on experimentally inbred lines and performs a genome-wide search to locate multiple potential QTL. The package can handle continuous, binary and ordinal traits. (entry from Genetic Analysis Software)

Proper citation: R/QTLBIM (RRID:SCR_009375) Copy   


  • RRID:SCR_013124

http://www.dkfz.de/en/epidemiologie-krebserkrankungen/software/software.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 24,2023. Software program that performs estimation of power and sample sizes required to detect genetic and environmental main, as well as gene-environment interaction (GxE) effects in indirect matched case-control studies (1:1 matching). When the hypothesis of GxE is tested, power/sample size will be estimated for the detection of GxE, as well as for the detection of genetic and environmental marginal effects. Furthermore, power estimation is implemented for the joint test of genetic marginal and GxE effects (Kraft P et al., 2007). Power and sample size estimations are based on Gauderman''s (2002) asymptotic approach for power and sample size estimations in direct studies of GxE. Hardy-Weinberg equilibrium and independence of genotypes and environmental exposures in the population are assumed. The estimates are based on genotypic codes (G=1 (G=0) for individuals who carry a (non-) risk genotype), which depend on the mode of inheritance (dominant, recessive, or multiplicative). A conditional logistic regression approach is used, which employs a likelihood-ratio test with respect to a biallelic candidate SNP, a binary environmental factor (E=1 (E=0) in (un)exposed individuals), and the interaction between these components. (entry from Genetic Analysis Software)

Proper citation: PIAGE (RRID:SCR_013124) Copy   


  • RRID:SCR_013133

    This resource has 10+ mentions.

http://bioinformatics.ust.hk/BOOST.html

Software application (entry from Genetic Analysis Software) for a method for detecting gene-gene interactions. It allows examining all pairwise interactions in genome-wide case-control studies.

Proper citation: BOOST (RRID:SCR_013133) Copy   


  • RRID:SCR_013347

    This resource has 1+ mentions.

http://folk.uio.no/thoree/FEST/

An R package for simulations and likelihood calculations of pair-wise family relationships using DNA marker data. (entry from Genetic Analysis Software)

Proper citation: R/FEST (RRID:SCR_013347) Copy   


http://www.i2b2.org

i2b2 (Informatics for Integrating Biology and the Bedside) is an NIH-funded National Center for Biomedical Computing based at Partners HealthCare System. The i2b2 Center is developing a scalable informatics framework that will enable clinical researchers to use existing clinical data for discovery research and, when combined with IRB-approved genomic data, facilitate the design of targeted therapies for individual patients with diseases having genetic origin. For some resources (e.g. software) the use of the resource requires accepting a specific (e.g. OpenSource) license.

Proper citation: Informatics for Integrating Biology and the Bedside (RRID:SCR_013629) Copy   


http://www.nitrc.org/projects/nusdast

A repository of schizophrenia neuroimaging data collected from over 450 individuals with schizophrenia, healthy controls and their respective siblings, most with 2-year longitudinal follow-up. The data include neuroimaging data, cognitive data, clinical data, and genetic data.

Proper citation: Northwestern University Schizophrenia Data and Software Tool (NUSDAST) (RRID:SCR_014153) Copy   


https://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl

Software tool for performing tests for deviation from Hardy-Weinberg equilibrium and tests for association. Used in population-based genetic association studies to identify susceptibility genes for complex diseases.

Proper citation: Tests for deviation from Hardy-Weinberg equilibrium (RRID:SCR_016496) Copy   


http://www.broadcvdi.org/

Platform for analysis of the genetics of cardiovascular disease.Used for searching and analysis of human genetic information linked to myocardial infarction, atrial fibrillation and related traits while protecting the integrity and confidentiality of the data.

Proper citation: Cardiovascular Disease Knowledge Portal (RRID:SCR_016536) Copy   


  • RRID:SCR_016574

    This resource has 10+ mentions.

https://www.ncbi.nlm.nih.gov/projects/mutagene/

Software tool to explore and analyze mutagenic factors leading to tumors to decipher cancer genetic heterogeneity.

Proper citation: MutaGene (RRID:SCR_016574) Copy   


  • RRID:SCR_017400

    This resource has 1+ mentions.

https://github.com/BDI-pathogens/phyloscanner

Software tool for analysing pathogen genetic diversity and relationships between and within hosts at once, in windows along genome. Inferring transmission from within and between host pathogen genetic diversity.

Proper citation: phyloscanner (RRID:SCR_017400) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X