Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://simtk.org/home/rna-viz-proto
A software application for animating and visualising RNA and other macromolecular structures. Users are able to use their intuition to interactively refold RNA structures and produce morphs from one structure to another. It allow researchers to explore and manipulate molecular structures Imported from BiositeMaps registry, to better understand structure:function relationships, folding pathways, and molecular motion.
Proper citation: ToRNADo (RRID:SCR_002706) Copy
https://www.proteinspire.org/MOPED/
An expanding multi-omics resource that enables rapid browsing of gene and protein expression information from publicly available studies on humans and model organisms. MOPED also serves the greater research community by enabling users to visualize their own expression data, compare it with existing studies, and share it with others via private accounts. MOPED uniquely provides gene and protein level expression data, meta-analysis capabilities and quantitative data from standardized analysis utilizing SPIRE (Systematic Protein Investigative Research Environment). Data can be queried for specific genes and proteins; browsed based on organism, tissue, localization and condition; and sorted by false discovery rate and expression. MOPED links to various gene, protein, and pathway databases, including GeneCards, Entrez, UniProt, KEGG and Reactome. The current version of MOPED (MOPED 2.5) The current version of MOPED (MOPED 2.5, 2014) contains approximately 5 million total records including ~260 experiments and ~390 conditions.
Proper citation: MOPED - Model Organism Protein Expression Database (RRID:SCR_006065) Copy
http://pathwaynet.princeton.edu/
Web user interface for interaction predictions of human gene networks and integrative analysis of user data types that takes advantage of data from diverse tissue and cell-lineage origins. Predicts presence of functional association and interaction type among human genes or its protein products on whole genome scale. Used to analyze experimetnal gene in context of interaction networks.
Proper citation: PathwayNet (RRID:SCR_017353) Copy
http://neuroproteomics.scs.illinois.edu/microMS.htm
Software Python platform for image guided Mass Spectrometry profiling. Provides graphical user interface for automatic cell finding and point based registration from whole slide images. Simplifies single cell analysis with feature rich image processing.
Proper citation: microMS (RRID:SCR_017443) Copy
https://modbase.compbio.ucsf.edu/foxs/
Web server for computing theoretical scattering profile of structure and fitting of experimental profile. Computes SAXS profile of given atomistic model and fits it to experimental profile. Used for structural modeling applications with small angle X-ray scattering data.
Proper citation: FoXS (RRID:SCR_017269) Copy
Software package for advanced Bayesian evolutionary analysis by sampling trees. Used for phylogenetics, population genetics and phylodynamics. Program for Bayesian phylogenetic analysis of molecular sequences. Estimates rooted, time measured phylogenies using strict or relaxed molecular clock models. Framework can be extended by third parties. Comprised of standalone programs including BEAUti, BEAST, MASTER, RBS, SNAPP, MultiTypeTree, BDSKY, LogAnalyser, LogCombiner, TreeAnnotator, DensiTree and package manager.
Proper citation: BEAST2 (RRID:SCR_017307) Copy
https://amp.pharm.mssm.edu/geneshot/
Software tool as search engine for ranking genes from arbitrary text queries. Enables to enter arbitrary search terms, to receive ranked lists of genes relevant to search terms. Returned ranked gene lists contain genes that were previously published in association with search terms, as well as genes predicted to be associated with terms based on data integration from multiple sources. Search results are presented with interactive visualizations.
Proper citation: Geneshot (RRID:SCR_017582) Copy
https://midasnetwork.us/covid-19/
Portal for COVID-19 modeling research. Public access data collections with documented metadata.Computational models to study transmission dynamics of broad range of infectious diseases.
Proper citation: Modeling Infectious Disease Agents Study online portal for COVID-19 (RRID:SCR_018281) Copy
https://maayanlab.cloud/chea3/
Web based transcription factor enrichment analysis. Web server ranks TFs associated with user-submitted gene sets. ChEA3 background database contains collection of gene set libraries generated from multiple sources including TF-gene co-expression from RNA-seq studies, TF-target associations from ChIP-seq experiments, and TF-gene co-occurrence computed from crowd-submitted gene lists. Enrichment results from these distinct sources are integrated to generate composite rank that improves prediction of correct upstream TF compared to ranks produced by individual libraries.
Proper citation: ChIP-X Enrichment Analysis 3 (RRID:SCR_023159) Copy
Software tool for high throughput bacterial cell detection and quantitative analysis. Used to analyze bacterial cells. Used to process images derived from variety of microscopy experiments with special emphasis on large image sets. Performs intensity and morphology measurements as well as customized detection of poles, septa, fluorescent foci, and organelles, determines their sub-cellular localization with sub-pixel resolution, and tracks them over time.
Proper citation: MicrobeJ (RRID:SCR_023914) Copy
https://kleintools.hms.harvard.edu/tools/spring.html
Interactive web tool to visualize single cell data using force directed graph layouts. Kinetic interface for visualizing high dimensional single cell expression data. Collection of pre-processing scripts and web browser based tool for visualizing and interacting with high dimensional data.
Proper citation: SPRING (RRID:SCR_023578) Copy
Web server application that infers overrepresentation of upstream kinases whose putative substrates are in user inputted list of proteins. Used to analyze data from phosphoproteomics and proteomics studies to predict upstream kinases responsible for observed differential phosphorylations.
Proper citation: Kinase Enrichment Analysis 3 (RRID:SCR_023623) Copy
https://masst.gnps2.org/microbemasst/
Web taxonomically informed mass spectrometry search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging database of over 60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns.
Proper citation: microbeMASST (RRID:SCR_024713) Copy
The Dynamic Regulatory Events Miner (DREM) allows one to model, analyze, and visualize transcriptional gene regulation dynamics. The method of DREM takes as input time series gene expression data and static transcription factor-gene interaction data (e.g. ChIP-chip data), and produces as output a dynamic regulatory map. The dynamic regulatory map highlights major bifurcation events in the time series expression data and transcription factors potentially responsible for them. DREM 2.0 was released and supports a number of new features including: * new static binding data for mouse, human, D. melanogaster, A. thaliana * a new and more flexible implementation of the IOHMM supports dynamic binding data for each time point or as a mix of static/dynamic TF input * expression levels of TFs can be used to improve the models learned by DREM * the motif finder DECOD can be used in conjuction with DREM and help find DNA motifs for unannotated splits * new features for the visualization of expressed TFs, dragging boxes in the model view, and switching between representations
Proper citation: Dynamic Regulatory Events Miner (RRID:SCR_003080) Copy
http://www.sci.utah.edu/cibc/software/231-biomesh3d.html
A free, easy to use program for generating quality meshes for use in biological simulations. It is currently integrated with SCIRun and uses the SCIRun system to visualize the intermediate results. The BioMesh3D program uses a particle system to distribute nodes on the separating surfaces that separate the different materials and then uses the TetGen software package to generate a full tetrahedral mesh.
Proper citation: BioMesh3D (RRID:SCR_009534) Copy
http://amp.pharm.mssm.edu/X2K/
Software tool to produce inferred networks of transcription factors, proteins, and kinases predicted to regulate the expression of the inputted gene list by combining transcription factor enrichment analysis, protein-protein interaction network expansion, with kinase enrichment analysis. It provides the results as tables and interactive vector graphic figures.
Proper citation: eXpression2Kinases (RRID:SCR_016307) Copy
http://compbio.cs.princeton.edu/conservation/
Software for scoring protein sequence conservation using the Jensen-Shannon divergence. It can be used to predict catalytic sites and residues near bound ligands.
Proper citation: Conservation (RRID:SCR_016064) Copy
Biomedical technology research center establishing the infrastructure for fast, routine, atomic structure determination of subcellular complexes by electron cryo-microscopy, computer reconstruction and modeling. Their emphasis is on specimens that cannot currently be studied by conventional structural techniques such as x-ray crystallography or NMR. The ultimate outcome of their research is a three-dimensional image of the complex that can be used for design of drugs and vaccines for a variety of diseases. The center is focused on extending the resolution, speed and flexibility of cryo-electron microscopy for the three-dimensional structure determination of biological macromolecular assemblies. Cryo-electron microscopy can visualize molecules under near-native conditions at resolutions ranging from 0.3 to 5 nm and can yield images of individual molecules in a range of different conformations as they exist in solution. Other cryo-electron mycroscopy techniques, such as cryo-electron tomography, are being developed to capture molecular structures in situ. The equipment, techniques and expertise developed are available to the research community through collaborative projects. The NCMI also provides training through workshops and other forms of dissemination via both traditional and modern Internet-based methods.
Proper citation: National Center for Macromolecular Imaging (RRID:SCR_001445) Copy
Biomedical technology resource center that develops software and web-based resources for the visualization and analysis of molecular structure, and related data, at scales ranging from the atomic to the supramolecular. They create tools for handling and integrating diverse types of biomolecular data, including atomic-resolution coordinates, density maps, sequences, annotations, and networks. Their primary efforts are in the visualization and analysis of structures of molecules and molecular assemblies, enzyme sequence-structure-function relationships, and network representations of protein similarity, binding interactions, and biological pathways. They provide technologies to enable identifying the molecular bases of disease and phenotypic variation, annotating proteins of unknown function, identifying targets for drug development, designing drugs, and engineering proteins with new functions. RBVI distributes software tools, including the popular UCSF Chimera visualization and analysis package, develops and hosts the Structure-Function Linkage Database, and provides access to state-of-the-art computational resources in support of research projects in these areas.
Proper citation: Resource for Biocomputing Visualization and Informatics (RRID:SCR_001374) Copy
Biomedical technology research center and training resource that develops time-resolved laser technologies and instrumentation, with a focus on 2-D IR spectroscopy. The technologies enable atomic-level measurements of the fastest steps in biological processes to elucidate structure and dynamics in biological macromolecules, assemblies and cells. The Center makes most of its instrumentation available for service research projects to outside users nation-wide.
Proper citation: Ultrafast Optical Processes Laboratory (RRID:SCR_006582) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.