Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.garban.org/garban/home.php
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 12, 2012. GARBAN is a tool for analysis and rapid functional annotation of data arising from cDNA microarrays and proteomics techniques. GARBAN has been implemented with bioinformatic tools to rapidly compare, classify, and graphically represent multiple sets of data (genes/ESTs, or proteins), with the specific aim of facilitating the identification of molecular markers in pathological and pharmacological studies. GARBAN has links to the major genomic and proteomic databases (Ensembl, GeneBank, UniProt Knowledgebase, InterPro, etc.), and follows the criteria of the Gene Ontology Consortium (GO) for ontological classifications. Source may be shared: e-mail garban (at) ceit.es. Platform: Online tool
Proper citation: GARBAN (RRID:SCR_005778) Copy
http://great.stanford.edu/public/html/splash.php
Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool
Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy
Ratings or validation data are available for this resource
Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.
Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy
http://athina.biol.uoa.gr/bioinformatics/GENEVITO/
A JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources) and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI) allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of poor annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. GeneViTo has already been applied to visualize the genomes of two microbial organisms: the bacterion Chlamydia trachomatis and the archaeon Methanococcus jannaschii. The application is compatible with Linux or Windows ME-2000-XP operating systems, provided that the appropriate Java Runtime Environment (Java 1.4.1) is already installed in the system.
Proper citation: GeneVito (RRID:SCR_006211) Copy
http://www.chargeconsortium.com/
Consortium formed to facilitate genome-wide association study meta-analyses and replication opportunities among multiple large and well-phenotyped longitudinal cohort studies. A bibliography of CHARGE publications is available. Its founding member cohorts include: * Age, Gene, Environment, Susceptibility Study -- Reykjavik * Atherosclerosis Risk in Communities Study * Cardiovascular Health Study * Framingham Heart Study * Rotterdam Study Additional core cohorts include: * Coronary Artery Risk Development in Young Adults * Family Heart Study * Health, Aging, and Body Composition Study * Jackson Heart Study * Multi-Ethnic Study of Atherosclerosis
Proper citation: Cohorts for Heart and Aging Research in Genomic Epidemiology (RRID:SCR_004034) Copy
Consortium conducting meta-analyses of genome-wide genetic data for psychiatric disease. Focused on autism, attention-deficit hyperactivity disorder, bipolar disorder, major depressive disorder, schizophrenia, anorexia nervosa (AN), Tourette syndrome (TS), and obsessive-compulsive disorder (OCD). Used to investigate common single nucleotide polymorphisms (SNPs) genotyped on commercial arrays, structural variation (copy number variation) and uncommon or rare genetic variation. To participate you are asked to upload data from your study to central computer used by this consortium. Genetic Cluster Computer serves as data warehouse and analytical platform for this study . When data from your study have been incorporated, account will be provided on central server and access to all GWAS genotypes, phenotypes, and meta-analytic results relevant to deposited data and participation aims. NHGRI GWAS Catalog contains updated information about all GWAS in biomedicine, and is usually excellent starting point to find comprehensive list of studies. Files can be obtained by any PGC member for any disease to which they contributed data. These files can also be obtained by application to NIMH Genetics Repository. Individual-level genotype and phenotype data requires application, material transfer agreement, and informed consent consideration. Some datasets are also in controlled-access dbGaP and Wellcome Trust Case-Control Consortium repositories. PGC members can also receive back cleaned and imputed data and results for samples they contributed to PGC analyses.
Proper citation: Psychiatric Genomics Consortium (RRID:SCR_004495) Copy
Network evaluating consensus-based common data elements (CDE) for traumatic brain injury (TBI) and psychological health (TBI-CDE, www.commondataelements.ninds.nih.gov/TBI.aspx) while extensively phenotyping a cohort of TBI patients across the injury spectrum from concussion to coma. Institutions that participate in the TBI Network will be able to track the outcomes of patients through a 3, 6 and 12-month followup program and compare outcomes with other participating institutions. For the three acute care centers, patients were enrolled that presented to the emergency department within 24 hours of head injury and required computed tomography (CT). For the rehabilitation center, referrals from acute hospitals were enrolled. Patients were consented to participate in components: clinical profile; blood draws for measurement of proteomic and genomic markers; 3T MRI within 2 weeks; three-month Glasgow Outcome Scale-Extended (GOS-E); and six-month TBI-CDE Core outcome assessments. A web-enabled database, imaging repository, and biospecimen bank was developed using the TBI-CDE recommendations. A total of 605 patients were enrolled. Of these subjects, 88% had a GCS 13-15, 5% had a GCS 9-12, and 7% had a GCS of 8 or less. Three-month GOS-E''s were obtained for 78% of the patients. Comprehensive 6-month outcome measures, including PTSD assessment, are ongoing until September 2011. Blood specimens were collected from 450 patients. Initial CTs for 605 patients and 235 patients with 3T MRI studies were transferred to an imaging repository. The TRACK TBI Network will provide qualified institutions access to a web-based version of key forms in tracking TBI outcomes for Quality Improvement and institutional benchmarking.
Proper citation: TRACK TBI Network (RRID:SCR_004723) Copy
http://www.lajollaneuroscience.org/
Our NINDS Center Core Grant supports centralized resources and facilities shared by investigators with existing NINDS-funded research projects. Our Center is composed of three research cores, each of which will enrich the effectiveness of ongoing research, and promote new research directions. The three Core facilities support Electrophysiology, Neuropathology / Histology, and High-Throughput/High-Content Chemical and Genomic Library screening. By making these important Core Services available to the local Neuroscience community, the La Jolla Neurosciences Program hopes to promote the study of how the nervous system works and develop treatments for nervous system diseases. The cores and their services are available to La Jolla neuroscientists. Core services are available to NINDS-supported neuroscience projects from local investigators as well as young neuroscientists prior to obtaining their first NIH-funded grant. * Electrophysiology: SBMRI Electrophysiology ** The Electrophysiology Core consists of the Sanford-Burnham Electrophysiology Facility. This facility can perform patch-clamp intracellular and extracellular field recordings on a range of material including cultured cells and brain slices. The Sanford-Burnham facility emphasizes electrophysiological analysis of cultured cells and the detailed electrical properties of channels, receptors and recombinant proteins expressed in Xenopus oocytes or mammalian cells. * Neuropathology: UCSD Neuropathology ** The Neuropathology laboratory applies immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy to analysis of neurological disease in animal models. * Chemical Library Screening: SBIMR Assay Development, SBIMR Chemical Library Screening, SBIMR Cheminformatics, SBIMR High-content Screening ** The Chemical Library Screening core offers high-throughput screening (HTS) of biochemical and cell-based array using traditional HTS readouts and automated microscopy for high-content screening (HCS)> These facilities also offer array development and screening, as well as cheminformatics and medicinal chemistry., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.
Proper citation: La Jolla Interdisciplinary Neurosciences Center (RRID:SCR_002772) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on June 8, 2020.Macaque genomic and proteomic resources and how they are providing important new dimensions to research using macaque models of infectious disease. The research encompasses a number of viruses that pose global threats to human health, including influenza, HIV, and SARS-associated coronavirus. By combining macaque infection models with gene expression and protein abundance profiling, they are uncovering exciting new insights into the multitude of molecular and cellular events that occur in response to virus infection. A better understanding of these events may provide the basis for innovative antiviral therapies and improvements to vaccine development strategies.
Proper citation: Macaque.org (RRID:SCR_002767) Copy
Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.
Proper citation: Sal-Site (RRID:SCR_002850) Copy
It facilitates the search for and dissemination of mass spectra from biologically active metabolites quantified using Gas chromatography (GC) coupled to mass spectrometry (MS). Use the Search Page to search for a compound of your interest, using the name, mass, formula, InChI etc. as query input. Additionally, a Library Search service enables the search of user submitted mass spectra within the GMD. In parallel to the library search, a prediction of chemical sub-groups is performed. This approach has reached beta level and a publication is currently under review. Using several sub-group specific Decision Trees (DTs), mass spectra are classified with respect to the presence of the chemical moieties within the linked (unknown) compound. Prediction of functional groups (ms analysis) facilitates the search of metabolites within the GMD by means of user submitted GC-MS spectra consisting of retention index (n-alkanes, if vailable) and mass intensities ratios. In addition, a functional group prediction will help to characterize those metabolites without available reference mass spectra included in the GMD so far. Instead, the unknown metabolite is characterized by predicted presence or absence of functional groups. For power users this functionality presented here is exposed as soap based web services. Functional group prediction of compounds by means of GC-EI-MS spectra using Microsoft analysis service decision trees All currently available trained decision trees and sub-structure predictions provided by the GMD interface. Table describes the functional group, optional use of an RI system, record date of the trained decision tree, number of MSTs with proportion of MSTs linked to metabolites with the functional group present for each tree. Average and standard deviation of the 50-fold CV error, namely the ratio false over correctly sorted MSTs in the trained DT, are listed. The GMD website offers a range of mass spectral reference libraries to academic users which can be downloaded free of charge in various electronic formats. The libraries are constituted by base peak normalized consensus spectra of single analytes and contain masses in the range 70 to 600 amu, while the ubiquitous mass fragments typically generated from compounds carrying a trimethylsilyl-moiety, namely the fragments at m/z 73, 74, 75, 147, 148, and 149, were excluded.
Proper citation: GMD (RRID:SCR_006625) Copy
http://www.cdc.gov/genomics/default.htm
The Office of Public Health Genomics (OPHG) aims to integrate genomics into public health research, policy, and programs. Doing so could improve interventions designed to prevent and control the country''s leading chronic, infectious, environmental, and occupational diseases. OPHG''s efforts focus on conducting population-based genomic research, assessing the role of family health history in disease risk and prevention, supporting a systematic process for evaluating genetic tests, translating genomics into public health research and programs, and strengthening capacity for public health genomics in disease prevention programs. Goals: To improve public health interventions of diseases of major public health importance, including chronic, infectious, environmental, and occupational diseases, through six major initiatives: * Evaluation of Genomic Applications in Practice and Prevention (EGAPP), * Human Genome Epidemiology Network (HuGENet), * NHANES Collaborative Genomics Project, * Family History Public Health Initiative, * Genomics Translation Research and Programs, and, * Genomic Applications in Practice and Prevention Network (GAPPNet).
Proper citation: Public Health Genomics (RRID:SCR_006462) Copy
https://www.fludb.org/brc/home.spg?decorator=influenza
The Influenza Research Database (IRD) serves as a public repository and analysis platform for flu sequence, experiment, surveillance and related data.
Proper citation: Influenza Research Database (IRD) (RRID:SCR_006641) Copy
DPVweb provides a central source of information about viruses, viroids and satellites of plants, fungi and protozoa. Comprehensive taxonomic information, including brief descriptions of each family and genus, and classified lists of virus sequences are provided. The database also holds detailed, curated, information for all sequences of viruses, viroids and satellites of plants, fungi and protozoa that are complete or that contain at least one complete gene. For comparative purposes, it also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA genome. The start and end positions of each feature (gene, non-translated region and the like) have been recorded and checked for accuracy. As far as possible, nomenclature for genes and proteins are standardized within genera and families. Sequences of features (either as DNA or amino acid sequences) can be directly downloaded from the website in FASTA format. The sequence information can also be accessed via client software for PC computers (freely downloadable from the website) that enable users to make an easy selection of sequences and features of a chosen virus for further analyses. The public sequence databases contain vast amounts of data on virus genomes but accessing and comparing the data, except for relatively small sets of related viruses can be very time consuming. The procedure is made difficult because some of the sequences on these databases are incorrectly named, poorly annotated or redundant. The NCBI Reference Sequence project (1) provides a comprehensive, integrated, non-redundant set of sequences, including genomic DNA, transcript (RNA) and protein products, for major research organisms. This now includes curated information for a single sequence of each fully sequenced virus species. While this is a welcome development, it can only deal with complete sequences. An important feature of DPV is the opportunity to access genes (and other features) of multiple sequences quickly and accurately. Thus, for example, it is easy to obtain the nucleotide or amino acid sequences of all the available accessions of the coat protein gene of a given virus species or for a group of viruses. To increase its usefulness further, DPVweb also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA (ssDNA) genome. Sponsors: This site is supported by the Association of Applied Biologists and the Zhejiang Academy of Agricultural Sciences, Hangzhou, People''s Republic of China.
Proper citation: Descriptions of Plant Viruses (RRID:SCR_006656) Copy
http://bioconductor.org/packages/bioc/html/GeneAnswers.html
GeneAnswers provide an integrated tool for given genes biological or medical interpretation. It includes statistical test of given genes and specified categories. Microarray techniques have been widely employed in genomic scale studies for more than one decade. The standard analysis of microarray data is to filter out a group of genes from thousands of probes by certain statistical criteria. These genes are usually called significantly differentially expressed genes. Recently, next generation sequencing (NGS) is gradually adopted to explore gene transcription, methylation, etc. Also a gene list can be obtained by NGS preliminary data analysis. However, this type of information is not enough to understand the potential linkage between identified genes and interested functions. The integrated functional and pathway analysis with gene expression data would be very helpful for researchers to interpret the relationship between the identified genes and proposed biological or medical functions and pathways. The GeneAnswers package provides an integrated solution for a group of genes and specified categories (biological or medical functions, such as Gene Ontology, Disease Ontology, KEGG, etc) to reveal the potential relationship between them by means of statistical methods, and make user-friendly network visualization to interpret the results. Besides the package has a function to combine gene expression profile and category analysis together by outputting concept-gene cross tables, keywords query on NCBI Entrez Gene and application of human based Disease ontology analysis of given genes from other species can help people to understand or discover potential connection between genes and functions. Sponsors: This project was supported in part by Award Number UL1RR025741 from the National Center for Research Resources.
Proper citation: GeneAnswers (RRID:SCR_006498) Copy
http://inparanoid.sbc.su.se/cgi-bin/index.cgi
Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.
Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy
http://www.nervenet.org/main/dictionary.html
A mouse-related portal of genomic databases and tables of mouse brain data. Most files are intended for you to download and use on your own personal computer. Most files are available in generic text format or as FileMaker Pro databases. The server provides data extracted and compiled from: The 2000-2001 Mouse Chromosome Committee Reports, Release 15 of the MIT microsatellite map (Oct 1997), The recombinant inbred strain database of R.W. Elliott (1997) and R. W. Williams (2001), and the Map Manager and text format chromosome maps (Apr 2001). * LXS genotype (Excel file): Updated, revised positions for 330 markers genotyped using a panel of 77 LXS strain. * MIT SNP DATABASE ONLINE: Search and sort the MIT Single Nucleotide Polymorphism (SNP) database ONLINE. These data from the MIT-Whitehead SNP release of December 1999. * INTEGRATED MIT-ROCHE SNP DATABASE in EXCEL and TEXT FORMATS (1-3 MB): Original MIT SNPs merged with the new Roche SNPs. The Excel file has been formatted to illustrate SNP haplotypes and genetic contrasts. Both files are intended for statistical analyses of SNPs and can be used to test a method outlined in a paper by Andrew Grupe, Gary Peltz, and colleagues (Science 291: 1915-1918, 2001). The Excel file includes many useful equations and formatting that will help in navigating through this large database and in testing the in silico mapping method. * Use of inbred strains for the study of individual differences in pain related phenotypes in the mouse: Elissa J. Chesler''s 2002 dissertation, discussing issues relevant to the integration of genomic and phenomic data from standard inbred strains including genetic interactions with laboratory environmental conditions and the use of various in silico inbred strain haplotype based mapping algorithms for QTL analysis. * SNP QTL MAPPER in EXCEL format (572 KB, updated January 2002 by Elissa Chesler): This Excel workbook implements the Grupe et al. mapping method and outputs correlation plots. The main spreadsheet allows you to enter your own strain data and compares them to haplotypes. Be very cautious and skeptical when using this spreadsheet and the technique. Read all of the caveates. This excel version of the method was developed by Elissa Chesler. This updated version (Jan 2002) handles missing data. * MIT SNP Database (tab-delimited text format): This file is suitable for manipulation in statistics and spreadsheet programs (752 KB, Updated June 27, 2001). Data have been formatted in a way that allows rapid acquisition of the new data from the Roche Bioscience SNP database. * MIT SNP Database (FileMaker 5 Version): This is a reformatted version of the MIT Single Nucleotide Polymorphism (SNP) database in FileMaker 5 format. You will need a copy of this application to open the file (Mac and Windows; 992 KB. Updated July 13, 2001 by RW). * Gene Mapping and Map Manager Data Sets: Genetic maps of mouse chromosomes. Now includes a 10th generation advanced intercross consisting of 500 animals genetoyped at 340 markers. Lots of older files on recombinant inbred strains. * The Portable Dictionary of the Mouse Genome, 21,039 loci, 17,912,832 bytes. Includes all 1997-98 Chromosome Committee Reports and MIT Release 15. * FullDict.FMP.sit: The Portable Dictionary of the Mouse Genome. This large FileMaker Pro 3.0/4.0 database has been compressed with StuffIt. The Dictionary of the Mouse Genome contains data from the 1997-98 chromosome committee reports and MIT Whitehead SSLP databases (Release 15). The Dictionary contains information for 21,039 loci. File size = 4846 KB. Updated March 19, 1998. * MIT Microsatellite Database ONLINE: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. ONLINE. Updated July 12, 2001. * MIT Microsatellite Database: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. File size = 3.0 MB. Updated March 19, 1998. * OurPrimersDB: A small database of primers. Download this database if you are using numerous MIT primers to map genes in mice. This database should be used in combination with the MITDB as one part of a relational database. File size = 149 KB. Updated March 19, 1998. * Empty copy (clone) of the Portable Dictionary in FileMaker Pro 3.0 format. Download this file and import individual chromosome text files from the table into the database. File size = 231 KB. Updated March 19, 1998. * Chromosome Text Files from the Dictionary: The table lists data on gene loci for individual chromosomes.
Proper citation: Mouse Genome Databases (RRID:SCR_007147) Copy
http://www.genoscope.cns.fr/externe/tetraodon/
The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.
Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy
http://www.loni.usc.edu/BIRN/Projects/Mouse/
Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.
Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy
http://www.europeanlung.org/en/projects-and-research/projects/airprom/
Consortium focused on developing computer and physical models of the airway system for patients with asthma and chronic obstructive pulmonary disease (COPD). Developing accurate models will better predict how asthma and COPD develop, since current methods can only assess the severity of disease. They aim to bridge the gaps in clinical management of airways-based disease by providing reliable models that predict disease progression and the response to treatment for each person with asthma or COPD. A data management platform provides a secure and sustainable infrastructure that semantically integrates the clinical, physiological, genetic, and experimental data produced with existing biomedical knowledge from allied consortia and public databases. This resource will be available for analysis and modeling, and will facilitate sharing, collaboration and publication within AirPROM and with the broader community. Currently the AirPROM knowledge portal is only accessible by AirPROM partners.
Proper citation: AirPROM (RRID:SCR_003827) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.