Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://genewindow.nci.nih.gov/
Software tool for pre- and post-genetic bioinformatics and analytical work, developed and used at the Core Genotyping Facility (CGF) at the National Cancer Institute. While Genewindow is implemented for the human genome and integrated with the CGF laboratory data, it stands as a useful tool to assist investigators in the selection of variants for study in vitro, or in novel genetic association studies. The Genewindow application and source code is publicly available for use in other genomes, and can be integrated with the analysis, storage, and archiving of data generated in any laboratory setting. This can assist laboratories in the choice and tracking of information related to genetic annotations, including variations and genomic positions. Features of GeneWindow include: -Intuitive representation of genomic variation using advanced web-based graphics (SVG) -Search by HUGO gene symbol, dbSNP ID, internal CGF polymorphism ID, or chromosome coordinates -Gene-centric display (only when a gene of interest is in view) oriented 5 to 3 regardless of the reference strand and adjacent genes -Two views, a Locus Overview, which varies in size depending on the gene or genomic region being viewed and, below it, a Sequence View displaying 2000 base pairs within the overview -Navigate the genome by clicking along the gene in the Locus Overview to change the Sequence View, expand or contract the genomic interval, or shift the view in the 5 or 3 direction (relative to the current gene) -Lists of available genomic features -Search for sequence matches in the Locus Overview -Genomic features are represented by shape, color and opacity with contextual information visible when the user moves over or clicks on a feature -Administrators can insert newly-discovered polymorphisms into the Genewindow database by entering annotations directly through the GUI -Integration with a Laboratory Information Management System (LIMS) or other databases is possible
Proper citation: GeneWindow (RRID:SCR_008183) Copy
The Distributed Annotation System (DAS) defines a communication protocol used to exchange annotations on genomic or protein sequences. It is motivated by the idea that such annotations should not be provided by single centralized databases, but should instead be spread over multiple sites. Data distribution, performed by DAS servers, is separated from visualization, which is done by DAS clients. The advantages of this system are that control over the data is retained by data providers, data is freed from the constraints of specific organisations and the normal issues of release cycles, API updates and data duplication are avoided. DAS is a client-server system in which a single client integrates information from multiple servers. It allows a single machine to gather up sequence annotation information from multiple distant web sites, collate the information, and display it to the user in a single view. Little coordination is needed among the various information providers. DAS is heavily used in the genome bioinformatics community. Over the last years we have also seen growing acceptance in the protein sequence and structure communities. A DAS-enabled website or application can aggregate complex and high-volume data from external providers in an efficient manner. For the biologist, this means the ability to plug in the latest data, possibly including a user''s own data. For the application developer, this means protection from data format changes and the ability to add new data with minimal development cost. Here are some examples of DAS-enabled applications or websites for end users: :- Dalliance Experimental Web/Javascript based Genome Viewer :- IGV Integrative Genome Viewer java based browser for many genomes :- Ensembl uses DAS to pull in genomic, gene and protein annotations. It also provides data via DAS. :- Gbrowse is a generic genome browser, and is both a consumer and provider of DAS. :- IGB is a desktop application for viewing genomic data. :- SPICE is an application for projecting protein annotations onto 3D structures. :- Dasty2 is a web-based viewer for protein annotations :- Jalview is a multiple alignment editor. :- PeppeR is a graphical viewer for 3D electron microscopy data. :- DASMI is an integration portal for protein interaction data. :- DASher is a Java-based viewer for protein annotations. :- EpiC presents structure-function summaries for antibody design. :- STRAP is a STRucture-based sequence Alignment Program. Hundreds of DAS servers are currently running worldwide, including those provided by the European Bioinformatics Institute, Ensembl, the Sanger Institute, UCSC, WormBase, FlyBase, TIGR, and UniProt. For a listing of all available DAS sources please visit the DasRegistry. Sponsors: The initial ideas for DAS were developed in conversations with LaDeana Hillier of the Washington University Genome Sequencing Center.
Proper citation: Distributed Annotation System (RRID:SCR_008427) Copy
http://bioinf.uni-greifswald.de/augustus/
Software for gene prediction in eukaryotic genomic sequences. Serves as a basis for further steps in the analysis of sequenced and assembled eukaryotic genomes.
Proper citation: Augustus (RRID:SCR_008417) Copy
https://code.google.com/p/ontology-for-genetic-interval/
An ontology that formalized the genomic element by defining an upper class genetic interval using BFO as its framework. The definition of genetic interval is the spatial continuous physical entity which contains ordered genomic sets (DNA, RNA, Allele, Marker,etc.) between and including two points (Nucleic_Acid_Base_Residue) on a chromosome or RNA molecule which must have a liner primary sequence structure.
Proper citation: Ontology for Genetic Interval (RRID:SCR_003423) Copy
http://smd.stanford.edu/cgi-bin/source/sourceSearch
SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool
Proper citation: SOURCE (RRID:SCR_005799) Copy
https://genomecenter.ucdavis.edu/core-facilities/
Genome Center uses technologies to understand how heritable genetic information of diverse organisms functions in health and disease. Provides research facilities, service cores, and staff for genomics research and training. Core facilities for Bioinformatics,DNA Technologies and Expression Analysis, Metabolomics, Proteomics,TILLING Core,Yeast One Hybrid Services Core.
Proper citation: UC Davis Genome Center Labs and Facilities (RRID:SCR_012480) Copy
http://www.daimi.au.dk/%7Emailund/SNPFile/
Software library and API for manipulating large SNP datasets with associated meta-data, such as marker names, marker locations, individuals'' phenotypes, etc. in an I/O efficient binary file format. In its core, SNPFile assumes very little about the metadata associated with markers and individuals, but leaves this up to application program protocols. (entry from Genetic Analysis Software)
Proper citation: SNPFILE (RRID:SCR_009402) Copy
Society that develop standards for biological research data quality, annotation and exchange. They facilitate the creation and use of software tools that build on these standards and allow researchers to annotate and share their data easily. They promote scientific discovery that is driven by genome wide and other biological research data integration and meta-analysis. Historically, FGED began with a focus on microarrays and gene expression data. However, the scope of FGED now includes data generated using any technology when applied to genome-scale studies of gene expression, binding, modification and other related applications.
Proper citation: FGED (RRID:SCR_001897) Copy
http://discover.nci.nih.gov/gominer/
GoMiner is a tool for biological interpretation of "omic" data including data from gene expression microarrays. Omic experiments often generate lists of dozens or hundreds of genes that differ in expression between samples, raising the question, What does it all mean biologically? To answer this question, GoMiner leverages the Gene Ontology (GO) to identify the biological processes, functions and components represented in these lists. Instead of analyzing microarray results with a gene-by-gene approach, GoMiner classifies the genes into biologically coherent categories and assesses these categories. The insights gained through GoMiner can generate hypotheses to guide additional research. GoMiner displays the genes within the framework of the Gene Ontology hierarchy in two ways: * In the form of a tree, similar to that in AmiGO * In the form of a "Directed Acyclic Graph" (DAG) The program also provides: * Quantitative and statistical analysis * Seamless integration with important public databases GoMiner uses the databases provided by the GO Consortium. These databases combine information from a number of different consortium participants, include information from many different organisms and data sources, and are referenced using a variety of different gene product identification approaches.
Proper citation: GoMiner (RRID:SCR_002360) Copy
http://galton.uchicago.edu/~junzhang/LAPSTRUCT.html
Software application to describe population structure using biomarker data ( typically SNPs, CNVs etc.) available in a population sample. The main features different from PCA are: (1) geometrically motivated and graphic model based; (2)robustness of outliers. (entry from Genetic Analysis Software)
Proper citation: LAPSTRUCT (RRID:SCR_007550) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 12,2024. Software application for pedigree drawing (entry from Genetic Analysis Software)
Proper citation: Pedigree-Draw (RRID:SCR_008302) Copy
The Beckman Institute BNMC brings together researchers from many disciplines at Caltech to address problems in the mechanistic modeling of coupled genomic, intercellular and intracellular processes. It represents an attempt to encourage closer interaction and collaboration between groups in Biology, Control and Dynamical Systems, and the Center for Advanced Computing Research. The focus of BNMC is biochemical phenomena occurring within and between cells, in particular the mechanistic modeling of molecular networks of all kinds (e.g., transcriptional, regulatory, metabolic, signal transduction, mechanical, etc.) with and without spatial variation and intercellular communication. BNMC is formed as a coordinated effort aimed at (1) applying existing capabilities to collaboratively solve biological modeling problems that arise in answering scientific questions in Caltech laboratories, (2) exploring a diversity of novel approaches in order to achieve fundamental advances necessary to address the classes of modeling problems biologists want to solve, and (3) organizing projects to better share human experience as well as common infrastructure to avoid duplication and maximize solution interoperability.
Proper citation: Caltech, The Beckman Institute: The Biological Network Modeling Center (RRID:SCR_008060) Copy
Web portal for the administration of Norwegian e-Infrastructure for Life Sciences. Enables Norwegian life scientists and their international collaborators to store, share, archive, and analyse their genomics scale data. NeLS is one of the packages of the ELIXIR.NO project.
Proper citation: NeLS (RRID:SCR_016301) Copy
https://atgu.mgh.harvard.edu/plinkseq/
An open-source C/C++ library for working with human genetic variation data. The specific focus is to provide a platform for analytic tool development for variation data from large-scale resequencing projects, particularly whole-exome and whole-genome studies. However, the library could in principle be applied to other types of genetic studies, including whole-genome association studies of common SNPs. (entry from Genetic Analysis Software)
Proper citation: PLINK/SEQ (RRID:SCR_013193) Copy
https://github.com/sansomlab/tenx
Pipeline for the analysis of 10x single cell RNA sequencing data. Collection of python3 pipelines and Rscripts to analyze data generated with the 10x Genomics platform. The pipelines are based on 10x's Cell Ranger pipeline for mapping and quantitation and the R Seurat package for downstream analysis.
Proper citation: tenx (RRID:SCR_016957) Copy
https://kidsfirstdrc.org/portal/portal-features/
Portal for analysis and interpretation of pediatric genomic and clinical data to advance personalized medicine for detection, therapy, and management of childhood cancer and structural birth defects. For patients, researchers, and clinicians to create centralized database of well curated clinical and genetic sequence data from patients with childhood cancer or structural birth defects.
Proper citation: Kids First Data Resource Portal (RRID:SCR_016493) Copy
https://github.com/davidemms/OrthoFinder
Software Python application for comparative genomics analysis. Finds orthogroups and orthologs, infers rooted gene trees for all orthogroups and identifies all of gene duplcation events in those gene trees, infers rooted species tree for species being analysed and maps gene duplication events from gene trees to branches in species tree, improves orthogroup inference accuracy. Runs set of protein sequence files, one per species, in FASTA format.
Proper citation: OrthoFinder (RRID:SCR_017118) Copy
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
Software package to arrange multiple heatmaps and support various annotation graphics. Used to visualize associations between different sources of data sets and to reveal potential patterns.
Proper citation: ComplexHeatmap (RRID:SCR_017270) Copy
https://satijalab.org/seurat/get_started.html
Software as R package designed for QC, analysis, and exploration of single cell RNA-seq data. Enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data.
Proper citation: Seurat (RRID:SCR_016341) Copy
https://github.com/Lcornet/GENERA
Software toolbox to infer completely reproducible comparative genomic and metabolic analyses on prokaryotes and small eukaryotes.
Proper citation: GENERA (RRID:SCR_023113) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.