Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.stanford.edu/~nigam/cgi-bin/dokuwiki/doku.php?id=clench
Cluster Enrichment (CLENCH) allows A. thaliana researchers to perform automated retrieval of GO annotations from TAIR and calculate enrichment of GO terms in gene group with respect to a reference set. Before calculating enrichment, CLENCH allows mapping of the returned annotations to arbitrary coarse levels using GO slim term lists (which can be edited by the user) and a local installation of GO. Platform: Windows compatible, Linux compatible,
Proper citation: CLENCH (RRID:SCR_005735) Copy
The Deciphering Developmental Disorders (DDD) study aims to find out if using new genetic technologies can help doctors understand why patients get developmental disorders. To do this we have brought together doctors in the 23 NHS Regional Genetics Services throughout the UK and scientists at the Wellcome Trust Sanger Institute, a charitably funded research institute which played a world-leading role in sequencing (reading) the human genome. The DDD study involves experts in clinical, molecular and statistical genetics, as well as ethics and social science. It has a Scientific Advisory Board consisting of scientists, doctors, a lawyer and patient representative, and has received National ethical approval in the UK. Over the next few years, we are aiming to collect DNA and clinical information from 12,000 undiagnosed children in the UK with developmental disorders and their parents. The results of the DDD study will provide a unique, online catalogue of genetic changes linked to clinical features that will enable clinicians to diagnose developmental disorders. Furthermore, the study will enable the design of more efficient and cheaper diagnostic assays for relevant genetic testing to be offered to all such patients in the UK and so transform clinical practice for children with developmental disorders. Over time, the work will also improve understanding of how genetic changes cause developmental disorders and why the severity of the disease varies in individuals. The Sanger Institute will contribute to the DDD study by performing genetic analysis of DNA samples from patients with developmental disorders, and their parents, recruited into the study through the Regional Genetics Services. Using microarray technology and the latest DNA sequencing methods, research teams will probe genetic information to identify mutations (DNA errors or rearrangements) and establish if these mutations play a role in the developmental disorders observed in patients. The DDD initiative grew out of the groundbreaking DECIPHER database, a global partnership of clinical genetics centres set up in 2004, which allows researchers and clinicians to share clinical and genomic data from patients worldwide. The DDD study aims to transform the power of DECIPHER as a diagnostic tool for use by clinicians. As well as improving patient care, the DDD team will empower researchers in the field by making the data generated securely available to other research teams around the world. By assembling a solid resource of high-quality, high-resolution and consistent genomic data, the leaders of the DDD study hope to extend the reach of DECIPHER across a broader spectrum of disorders than is currently possible.
Proper citation: Deciphering Developmental Disorders (RRID:SCR_006171) Copy
http://stormo.wustl.edu/ScerTF
Catalog of over 1,200 position weight matrices (PWMs) for 196 different yeast transcription factors (TFs). They've curated 11 literature sources, benchmarked the published position-specific scoring matrices against in-vivo TF occupancy data and TF deletion experiments, and combined the most accurate models to produce a single collection of the best performing weight matrices for Saccharomyces cerevisiae. ScerTF is useful for a wide range of problems, such as linking regulatory sites with transcription factors, identifying a transcription factor based on a user-input matrix, finding the genes bound/regulated by a particular TF, and finding regulatory interactions between transcription factors. Enter a TF name to find the recommended matrix for a particular TF, or enter a nucleotide sequence to identify all TFs that could bind a particular region.
Proper citation: ScerTF (RRID:SCR_006121) Copy
http://www-bionet.sscc.ru/sitex/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2019. Analyzing protein structure projection on exon-intron structure of corresponding gene through years led to several fundamental conclusions about structural and functional organization of the protein. According to these results we decided to map the protein functional sites. So we created the database SitEx that keep the information about this mapping and included the BLAST search and 3D similar structure search using PDB3DScan for the polypeptide encoded by one exon, participating in organizing the functional site. This will help: # to study the positions of the functional sites in exon structure; # to make the complex analysis of the protein function; # to exposure the exons that took part in exon shuffling and came from bacterial genomes; # to study the peculiarities of coding the polypeptide structures. Currently, SitEx contains information about 9994 functional sites presented in 2021 proteins described in proteomes of 17 organisms.
Proper citation: SitEx (RRID:SCR_006122) Copy
http://bio-bigdata.hrbmu.edu.cn/diseasemeth/
Human disease methylation database. DiseaseMeth version 2.0 is focused on aberrant methylomes of human diseases. Used for understanding of DNA methylation driven human diseases.
Proper citation: DiseaseMeth (RRID:SCR_005942) Copy
The DistiLD database aims to increase the usage of existing genome-wide association studies (GWAS) results by making it easy to query and visualize disease-associated SNPs and genes in their chromosomal context. The database performs three important tasks: # published GWAS are collected from several sources and linked to standardized, international disease codes ICD10 codes) # data from the International HapMap Project are analyzed to define linkage disequilibrium (LD) blocks onto which SNPs and genes are mapped # the web interface makes it easy to query and visualize disease-associated SNPs and genes within LD blocks. Users can query the database by diseases, SNPs or genes. No matter which of the three query modes was used, an intermediate page will be shown listing all the studies that matched the search with a link to the corresponding publication. The user can select either all studies related to a certain disease or one specific study for which to view the related LD blocks. The DistiLD resource integrates information on: * Associations between Single Nucleotide Polymorphisms (SNPs) and diseases from genome-wide association studies (GWAS) * Links between SNPs and genes based on linkage disequilibrium (LD) data from HapMap For convenience, we provide the complete datasets as two (zipped) tab-delimited files. The first file contains GWAS results mapped to LD blocks. The second file contains all SNPs and genes assigned to each LD block.
Proper citation: DistiLD - Diseases and Traits in LD (RRID:SCR_005943) Copy
https://compbio.dfci.harvard.edu/predictivenetworks//
A flexible, open-source, web-based application and data services framework that enables the integration, navigation, visualization and analysis of gene interaction networks. The primary goal of PN is to allow biomedical researchers to evaluate experimentally derived gene lists in the context of large-scale gene interaction networks. The PN analytical pipeline involves two key steps. The first is the collection of a comprehensive set of known gene interactions derived from a variety of publicly available sources. The second is to use these ''known'' interactions together with gene expression data to infer robust gene networks. The regression-based network inference algorithm creates a graph of gene interactions in which cycles may be present (but no self-loops). Based on information-theoretic techniques, a causal gene interaction network is inferred from both prior knowledge (interactions extracted from biomedical literature and structured biological databases) and gene expression data. A prediction model is fitted for each gene, given its parents, enabling assessment of the predictive ability of the network model.
Proper citation: Predictive Networks (RRID:SCR_006110) Copy
http://www.nematodes.org/nembase4/
NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.
Proper citation: NEMBASE (RRID:SCR_006070) Copy
https://pb.apf.edu.au/phenbank/homePage.html
The NHMRC Australian PhenomeBank (APB) is a non-profit repository of mouse strains used in Medical Research. The database allows you to search for murine strains, housed or archived in Australia, carrying mutations in particular genes, strains with transgenic alterations and for mice with particular phenotypes. 1876 publicly available strains, 922 genes, 439 transgenes The APB has two roles: Provide and maintain a central database of genetically modified mice held in Australia either live or as cryopreserved material; Establish and maintain a mouse strain archive. Strains are archived as cryopreserved sperm or embryos.
Proper citation: NHMRC Australian PhenomeBank (RRID:SCR_006149) Copy
One of eight Bioinformatics Resource Centers nationwide providing comprehensive web-based genomics resources including a relational database and web application supporting data storage, annotation, analysis, and information exchange to support scientific research directed at viruses belonging to the Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, Paramyxoviridae, Poxviridae, and Togaviridae families. These centers serve the scientific community and conduct basic and applied research on microorganisms selected from the NIH/NIAID Category A, B, and C priority pathogens that are regarded as possible bioterrorist threats or as emerging or re-emerging infectious diseases. The VBRC provides a variety of analytical and visualization tools to aid in the understanding of the available data, including tools for genome annotation, comparative analysis, whole genome alignments, and phylogenetic analysis. Each data release contains the complete genomic sequences for all viral pathogens and related strains that are available for species in the above-named families. In addition to sequence data, the VBRC provides a curation for each virus species, resulting in a searchable, comprehensive mini-review of gene function relating genotype to biological phenotype, with special emphasis on pathogenesis.
Proper citation: VBRC (RRID:SCR_005971) Copy
http://hfv.lanl.gov/content/index
The Hemorrhagic Fever Viruses (HFV) sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55,000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide.
Proper citation: HFV Database (RRID:SCR_006017) Copy
http://jjwanglab.org:8080/gwasdb/
Combines collections of genetic variants (GVs) from GWAS and their comprehensive functional annotations, as well as disease classifications. Used to maximize utilility of GWAS data to gain biological insights through integrative, multi-dimensional functional annotation portal. In addition to all GVs annotated in NHGRI GWAS Catalog, we manually curate GVs that are marginally significant (P value < 10-3) by looking into supplementary materials of each original publication and provide extensive functional annotations for these GVs. GVs are manually classified by diseases according to Disease Ontology Lite and HPO (Human Phenotype Ontology) for easy access. Database can also conduct gene based pathway enrichment and PPI network association analysis for those diseases with sufficient variants. SOAP services are available. You may Download GWASdb SNP. (This file contains all of the significant SNP in GWASdb. In the pvalue column, 0 means this P-value is not reported in the study but it is significant SNP. In the source column, GWAS:A represents the original data in GWAS catalog, while GWAS:B is our curation data which P-value < 10-3)
Proper citation: GWASdb (RRID:SCR_006015) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 7, 2022. Federation of International Mouse Resources (FIMRe) is a collaborating group of Mouse Repository and Resource Centers worldwide whose collective goal is to archive and provide strains of mice as cryopreserved embryos and gametes, ES cell lines, and live breeding stock to the research community. Goals of the Federation of International Mouse Resources: * Coordinate repositories and resource centers to: ** archive valuable genetically defined mice and ES cell lines being created worldwide ** meet research demand for these genetically defined mice and ES cell lines * Establish consistent, highest quality animal health standards in all resource centers * Provide genetic verification and quality control for genetic background and mutations * Provide resource training to enhance user ability to utilize cryopreserved resources
Proper citation: Federation of International Mouse Resources (RRID:SCR_006137) Copy
http://202.38.126.151:8080/SDisease/
Curated database of experimentally supported data of RNA Splicing mutation and disease. The RNA Splicing mutations include cis-acting mutations that disrupt splicing and trans-acting mutations that affecting RNA-dependent functions that cause disease. Information such as EntrezGeneID, gene genomic sequence, mutation (nucleotide substitutions, deletions and insertions), mutation location within the gene, organism, detailed description of the splicing mutation and references are also given. Users are able to submit new entries to the database. This database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, they manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference PubMed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. They standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, they give direct links of the entry to the respective position/region in the genome browser.
Proper citation: SpliceDisease (RRID:SCR_006130) Copy
http://www.mousephenotype.org/impress
Contains standardized phenotyping protocols essential for the characterization of mouse phenotypes. IMPReSS holds definitions of the phenotyping Pipelines and mandatory and optional Procedures and Parameters carried out and data collected by international mouse clinics following the protocols defined. This allows data to be comparable and shareable and ontological annotations permit interspecies comparison which may help in the identification of phenotypic mouse-models of human diseases. The IMPC (International Mouse Phenotyping Consortium) core pipeline describes the phenotype pipeline that has been agreed by the research institutions. IMPReSS has a SOAP web service machine interface. The WSDL can be accessed here: http://www.mousephenotype.org/impress/soap/server?wsdl
Proper citation: Impress (RRID:SCR_006160) Copy
Clearinghouse and exchange portal for gene variant (mutation) data produced by diagnostics laboratories, offering users a portal through which to announce, discover and acquire a comprehensive listing of observed neutral and disease-causing gene variants in patients and unaffected individuals. Cafe Variome is not a ''''database'''' for the hosting/display/release of data, but a shop window for finding data. As such, it holds only core info for each record, and uses this merely to enable holistic searching across resources. Diagnostics laboratories routinely assess DNA samples from patients with various inherited disorders, and so produce a great wealth of data on the genetic basis of disease. Unfortunately, those data are not usually shared with others. To address this gross deficiency, a novel system has been developed that aims to facilitate the automated transfer of diagnostic laboratory data to the wider community, via an internet based Cafe for routinely exchanging genetic variation data. The flow of research data concerning the genetic basis of health and disease is critical to understanding and developing treatments for a range of genetic diseases. Overall, the project aims to lower the barriers and provide incentives for a willing community to share data, and thereby facilitate the broader exploitation of diagnostic laboratory data. Cafe Variome aims to address the above data flow problems by: # Minimizing the effort required to publish variant data # Ensuring attribution for data creators working in diagnostic laboratories Key elements of the project strategy are: * Data publication will be automated by endowing standard analysis tools used by laboratories with an online data submission function. Submissions will be received by a central Internet depot, which will serve as a place where published datasets are advertised, and subsequently discovered by diverse 3rd parties. * Each dataset will be unambiguously linked with the data submitter''''s identity, and systems devised to facilitate citation of published variant datasets so they can be cited in the literature. Data creators will thus be credited for their contributions. Data submitters can use Cafe Variome to simply announce or publicize their data to the world. To enable this, only core, non-identifiable data is submitted to the central repository, enabling users to search and discover records of interest in the source repository. The data are not automatically handed on to the user (unless intended by the submitters). Hence, the concept is used to deal with the challenge of maximally sharing data whilst fully respecting ethico-legal considerations.
Proper citation: cafe variome (RRID:SCR_006162) Copy
http://www.brain-map.org/api/index.html
API and demo application for accessing the Allen Brain Atlas Mouse Brain data. Data available via the API includes download high resolution images, expression data from a 3D volume, 3D coordinates of the Allen Reference Atlas, and searching genes with similar gene expression profiles using NeuroBlast. Data made available includes: * High resolution images for gene expression, connectivity, and histology experiments, as well as annotated atlas images * 3-D expression summaries registered to a reference space for the Mouse Brain and Developing Mouse Brain * Primary microarray results for the Human Brain and Non-Human Primate * RNA sequencing results for the Developing Human Brain * MRI and DTI files for Human Brain The API consists of the following resources: * RESTful model access * Image download service * 3-D expression summary download service * Differential expression search services * NeuroBlast correlative searches * Image-to-image synchronization service * Structure graph download service
Proper citation: Allen Brain Atlas API (RRID:SCR_005984) Copy
http://athina.biol.uoa.gr/bioinformatics/GENEVITO/
A JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources) and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI) allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of poor annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. GeneViTo has already been applied to visualize the genomes of two microbial organisms: the bacterion Chlamydia trachomatis and the archaeon Methanococcus jannaschii. The application is compatible with Linux or Windows ME-2000-XP operating systems, provided that the appropriate Java Runtime Environment (Java 1.4.1) is already installed in the system.
Proper citation: GeneVito (RRID:SCR_006211) Copy
http://mango.adult-neurogenesis.de
Database of genes concerning adult neurogenesis mapped to cell types and processes that have been curated from the literature. In its present state, the database is restricted to neurogenesis in the hippocampus.
Proper citation: Mammalian Adult Neurogenesis Gene Ontology (RRID:SCR_006176) Copy
Web server to identify statistically enriched pathways, diseases, and GO terms for a set of genes or proteins, using pathway, disease, and GO knowledge from multiple famous databases. It allows for both ID mapping and cross-species sequence similarity mapping. It then performs statistical tests to identify statistically significantly enriched pathways and diseases. KOBAS 2.0 incorporates knowledge across 1327 species from 5 pathway databases (KEGG PATHWAY, PID, BioCyc, Reactome and Panther) and 5 human disease databases (OMIM, KEGG DISEASE, FunDO, GAD and NHGRI GWAS Catalog). A standalone command line version is also available, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: KOBAS (RRID:SCR_006350) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.