Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 16 showing 301 ~ 320 out of 854 results
Snippet view Table view Download 854 Result(s)
Click the to add this resource to a Collection

https://azurebiosystems.com/products/azure-imaging-systems/azure-600/

Benchtop instrument designed for life science research, specifically for imaging, detecting, and quantifying protein and nucleic acids on gels and blots. It enables multi-channel analysis, including laser infrared (IR) fluorescence, RGB visible fluorescence, and chemiluminescence, allowing for multiplexed Western blots.

Proper citation: Azure Biosystems c600 Imaging System (RRID:SCR_027952) Copy   


  • RRID:SCR_001993

    This resource has 100+ mentions.

http://www.ebi.ac.uk/biomodels-main/

Repository of mathematical models of biological and biomedical systems. Hosts selection of existing literature based physiologically and pharmaceutically relevant mechanistic models in standard formats. Features programmatic access via Web Services. Each model is curated to verify that it corresponds to reference publication and gives proper numerical results. Curators also annotate components of models with terms from controlled vocabularies and links to other relevant data resources allowing users to search accurately for models they need. Models can be retrieved in SBML format and import/export facilities are being developed to extend spectrum of formats supported by resource.

Proper citation: BioModels (RRID:SCR_001993) Copy   


  • RRID:SCR_002047

    This resource has 100+ mentions.

http://www.aspgd.org/

Database of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus including information about genes and proteins of Aspergillus nidulans and Aspergillus fumigatus; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Sgenus species. Also available are Gene Ontology (GO) and community resources. Based on the Candida Genome Database, the Aspergillus Genome Database is a resource for genomic sequence data and gene and protein information for Aspergilli. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). Search options allow you to: *Search AspGD database using keywords. *Find chromosomal features that match specific properties or annotations. *Find AspGD web pages using keywords located on the page. *Find information on one gene from many databases. *Search for keywords related to a phenotype (e.g., conidiation), an allele (such as veA1), or an experimental condition (e.g., light). Analysis and Tools allow you to: *Find similarities between a sequence of interest and Aspergillus DNA or protein sequences. *Display and analyze an Aspergillus sequence (or other sequence) in many ways. *Navigate the chromosomes set. View nucleotide and protein sequence. *Find short DNA/protein sequence matches in Aspergillus. *Design sequencing and PCR primers for Aspergillus or other input sequences. *Display the restriction map for a Aspergillus or other input sequence. *Find similarities between a sequence of interest and fungal nucleotide or protein sequences. AspGD welcomes data submissions.

Proper citation: ASPGD (RRID:SCR_002047) Copy   


http://www.doe-mbi.ucla.edu/

The UCLA-DOE Institute for Genomics and Proteomics carries out research in bioenergy, structural biology, genomics and proteomics, consistent with the research mission of the United States Department of Energy. Major interests of the 12 Principal Investigators and 9 Associate Members include systems approaches to organisms, structural biology, bioinformatics, and bioenergetic systems. The Institute sponsors 5 Core Technology Centers, for X-ray and NMR structural determination, bioinformatics and computation, protein expression and purification, and biochemical instrumentation. Services offered by this Institute: - Databases: * DIP (The Database of Interacting Proteins): The DIPTM database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. * ProLinks Database of Functional Linkages: The Prolinks database is a collection of inference methods used to predict functional linkages between proteins. These methods include the Phylogenetic Profile method which uses the presence and absence of proteins across multiple genomes to detect functional linkages; the Gene Cluster method, which uses genome proximity to predict functional linkage; Rosetta Stone, which uses a gene fusion event in a second organism to infer functional relatedness; and the Gene Neighbor method, which uses both gene proximity and phylogenetic distribution to infer linkage. - Data-to-Structure Servers: * SAVEs Structure Verification Server * Merohedral Twinning Test Server * SER Surface Entropy Reduction Server * VERIFY3D Structure Verification Server * ERRAT Structure Verification Server - Structure-to-Function Servers: * ProKnow Protein Functionator * Hot Patch Functional Site Locator

Proper citation: University of California at Los Angeles - Department of Energy Institute for Genomics and Proteomics (RRID:SCR_001921) Copy   


  • RRID:SCR_002117

    This resource has 10+ mentions.

http://www.proteinlounge.com

Complete siRNA target database, complete Peptide-Antigen target database and a Kinase-Phosphatase database. They have also developed the largest database of illustrated signal transduction pathways, which are interconnected to their extensive protein database and online gene / protein analysis tools. The interactive web-based databases and software help life-scientists understand the complexity of systems biology. Systems biology efforts focus on understanding cellular networks, protein interactions involved in cell signaling, mechanisms of cell survival and apoptosis leading to development or identification of drug candidates against a variety of diseases. In the post-genomic era, one of the major concerns for life-science researchers is the organization of gene / protein data. Protein Lounge has met this concern by organizing all necessary data about genes / proteins into one portal.

Proper citation: Protein Lounge (RRID:SCR_002117) Copy   


http://microbes.ucsc.edu/cgi-bin/hgGateway?db=neisMeni_MC58_1

Portal contains detailed information for Neisseria meningitidis MC58. Information include DNA molecule summary, primary annotation summary, and taxonomy. It is a tool that allows the researcher to access all of the bacterial genome sequences completed to date. Users may access information on all of the bacterial genomes or any subset of them. Information in the website about its DNA molecule includes: total number of DNA molecules, total size of all DNA molecules, number of primary annotation coding bases, and number of G + C bases. Its primary annotation summary include: total genes, protein coding genes, tRNA genes, and rRNA genes. Sponsors: The CMR was previously funded by two grants, one from the U.S. Department of Energy (DOE) and one from the National Science Foundation (NSF). It is currently partially funded by a Microbial Sequence Center (MSC) grant from the National Institute of Allergy and Infectious Diseases (NIAID)

Proper citation: Neisseria meningitidis MC58 Genome Page (RRID:SCR_002200) Copy   


http://bioafrica.mrc.ac.za/index.html

The BioAfrica HIV-1 Proteomics Resource is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. HIV Proteomics Resource contains information about each HIV-1 gene product in regard to expression, post-transcriptional / post-translational modifications, localization, functional activities, and potential interactions with viral and host macromolecules. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites.

Proper citation: BioAfrica HIV Informatics in Africa (RRID:SCR_002295) Copy   


  • RRID:SCR_002359

    This resource has 500+ mentions.

http://www.ddbj.nig.ac.jp

Maintains and provides archival, retrieval and analytical resources for biological information. Central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: DDBJ Omics Archive and BioProject. DOR is archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides organizational framework to access metadata about research projects and data from projects that are deposited into different databases.

Proper citation: DNA DataBank of Japan (DDBJ) (RRID:SCR_002359) Copy   


  • RRID:SCR_002550

    This resource has 1+ mentions.

http://ccmbweb.ccv.brown.edu/gibbs/gibbs.html

Software to identify motifs, conserved regions, in DNA or protein sequences.

Proper citation: Gibbs Motif Sampler (RRID:SCR_002550) Copy   


  • RRID:SCR_000119

    This resource has 1+ mentions.

http://orphelia.gobics.de/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23,2022. A metagenomic open reading frame (ORF) finding tool for the prediction of protein coding genes in short, environmental DNA sequences with unknown phylogenetic origin. The resource is based on a two-stage machine learning approach that uses linear discriminants to extract features from the ORFs. An artificial neural network then combines the features and computes a gene probability for each ORF fragment.

Proper citation: Orphelia (RRID:SCR_000119) Copy   


https://services.healthtech.dtu.dk/

Center for Biological Sequence Analysis of the Technical University of Denmark conducts basic research in the field of bioinformatics and systems biology and directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. A large number of computational methods have been produced, which are offered to others via WWW servers. Several data sets are also available. The center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. The on-line prediction services at CBS are available as interactive input forms. Most of the servers are also available as stand-alone software packages with the same functionality. In addition, for some servers, programmatic access is provided in the form of SOAP-based Web Services. The center also educates engineering students in biotechnology and systems biology and offers a wide range of courses in bioinformatics, systems biology, human health, microbiology and nutrigenomics.

Proper citation: DTU Center for Biological Sequence Analysis (RRID:SCR_003590) Copy   


  • RRID:SCR_003485

    This resource has 1000+ mentions.

http://www.reactome.org

Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.

Proper citation: Reactome (RRID:SCR_003485) Copy   


http://mimi.ncibi.org/MimiWeb/main-page.jsp

MiMi Web gives you an easy to use interface to a rich NCIBI data repository for conducting your systems biology analyses. This repository includes the MiMI database, PubMed resources updated nightly, and text mined from biomedical research literature. The MiMI database comprehensively includes protein interaction information that has been integrated and merged from diverse protein interaction databases and other biological sources. With MiMI, you get one point of entry for querying, exploring, and analyzing all these data. MiMI provides access to the knowledge and data merged and integrated from numerous protein interactions databases and augments this information from many other biological sources. MiMI merges data from these sources with deep integration into its single database with one point of entry for querying, exploring, and analyzing all these data. MiMI allows you to query all data, whether corroborative or contradictory, and specify which sources to utilize. MiMI displays results of your queries in easy-to-browse interfaces and provides you with workspaces to explore and analyze the results. Among these workspaces is an interactive network of protein-protein interactions displayed in Cytoscape and accessed through MiMI via a MiMI Cytoscape plug-in. MiMI gives you access to more information than you can get from any one protein interaction source such as: * Vetted data on genes, attributes, interactions, literature citations, compounds, and annotated text extracts through natural language processing (NLP) * Linkouts to integrated NCIBI tools to: analyze overrepresented MeSH terms for genes of interest, read additional NLP-mined text passages, and explore interactive graphics of networks of interactions * Linkouts to PubMed and NCIBI's MiSearch interface to PubMed for better relevance rankings * Querying by keywords, genes, lists or interactions * Provenance tracking * Quick views of missing information across databases. Data Sources include: BIND, BioGRID, CCSB at Harvard, cPath, DIP, GO (Gene Ontology), HPRD, IntAct, InterPro, IPI, KEGG, Max Delbreuck Center, MiBLAST, NCBI Gene, Organelle DB, OrthoMCL DB, PFam, ProtoNet, PubMed, PubMed NLP Mining, Reactome, MINT, and Finley Lab. The data integration service is supplied under the conditions of the original data sources and the specific terms of use for MiMI. Access to this website is provided free of charge. The MiMI data is queryable through a web services api. The MiMI data is available in PSI-MITAB Format. These files represent a subset of the data available in MiMI. Only UniProt and RefSeq identifiers are included for each interactor, pathways and metabolomics data is not included, and provenance is not included for each interaction. If you need access to the full MiMI dataset please send an email to mimi-help (at) umich.edu.

Proper citation: Michigan Molecular Interactions (RRID:SCR_003521) Copy   


  • RRID:SCR_003825

    This resource has 1+ mentions.

http://www.agedbrainsysbio.eu/

Consortium focused on identifying the foundational pathways responsible for the aging of the brain, with a focus on Late Onset Alzheimer's disease. They aim to identify the interactions through which the aging phenotype develops in normal and in disease conditions; modeling novel pathways and their evolutionary properties to design experiments that identify druggable targets. As early steps of neurodegenerative disorders are expected to impact synapse function the project will focus in particular on pre- or postsynaptic protein networks. The concept is to identify subsets of pathways with two unique druggable hallmarks, the validation of interactions occurring locally in subregions of neurons and a human and/or primate accelerated evolutionary signature. The consortium will do this through six approaches: * identification of interacting protein networks from recent Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) data, * experimental validation of interconnected networks working in subregion of a neuron (such as dendrites and dendritic spines), * inclusion of these experimentally validated networks in larger networks obtained from available databases to extend possible protein interactions, * identification of human and/or primate positive selection either in coding or in regulatory gene sequences, * manipulation of these human and/or primate accelerated evolutionary interacting proteins in human neurons derived from induced Pluripotent Stem Cells (iPSCs) * modeling predictions in drosophila and novel mouse transgenic models * validation of new druggable targets and markers as a proof-of-concept towards the prevention and cure of aging cognitive defects. The scientists will share results and know-how on Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) gene discovery, comparative functional genomics in mouse and drosophila models, in mouse transgenic approaches, research on human induced pluripotent stem cells (hiPSC) and their differentiation in vitro and modeling pathways with emphasis on comparative and evolutionary aspects. The four European small to medium size enterprises (SMEs) involved will bring their complementary expertise and will ensure translation of project results to clinical application.

Proper citation: AgedBrainSYSBIO (RRID:SCR_003825) Copy   


http://iubio.bio.indiana.edu/webapps/SeWeR/

Sequence analysis using Web Resources (SeWeR) is an integrated, Dynamic HTML (DHTML) interface to commonly used bioinformatics services available on the World Wide Web. It is highly customizable, extendable, platform neutral, completely server-independent and can be hosted as a web page as well as being used as stand-alone software running within a web browser. It doesn''t require any server to host itself. The goal of SeWeR is to turn your web-browser into a powerful sequence-analysis tool. It is written entirely in JavaScript1.2. SeWeR can be downloaded and mirrored freely. The whole package is just around 300K. You can even run it from a floppy. SeWeR is not compatible with Netscape 6. SeWeR now generates graphics. Savvy is a plasmid drawing software that generates plasmid map in the revolutionary Scalable Vector Graphics format from W3C.

Proper citation: SeWeR - SEquence analysis using WEb Resources (RRID:SCR_004167) Copy   


  • RRID:SCR_003872

    This resource has 1+ mentions.

http://www.newmeds-europe.com/

Consortium that will develop new models and methods to enable novel treatments for schizophrenia and depression including three important missing tools that will facilitate the translation of scientific findings into benefits for patients. The project will focus on developing new animal models which use brain recording and behavioral tests to identify innovative and effective drugs for schizophrenia. The project will develop standardized paradigms, acquisition and analysis techniques to apply brain imaging, especially fMRI and PET imaging to drug development. It will examine how new genetic findings (duplication and deletion or changes in genes) influence the response to various drugs and whether this information can be used to choose the right drug for the right patient. And finally, it will try and develop new approaches for shorter and more efficient trials of new medication - trials that may require fewer patients and give faster results.

Proper citation: NEWMEDS (RRID:SCR_003872) Copy   


  • RRID:SCR_004480

    This resource has 10+ mentions.

http://nematode.lab.nig.ac.jp/

Expression pattern map of the 100Mb genome of the nematode Caenorhabditis elegans through EST analysis and systematic whole mount in situ hybridization. NEXTDB is the database to integrate all information from their expression pattern project and to make the data available to the scientific community. Information available in the current version is as follows: * Map: Visual expression of the relationships among the cosmids, predicted genes and the cDNA clones. * Image: In situ hybridization images that are arranged by their developmental stages. * Sequence: Tag sequences of the cDNA clones are available. * Homology: Results of BLASTX search are available. Users of the data presented on our web pages should not publish the information without our permission and appropriate acknowledgment. Methods are available for: * In situ hybridization on whole mount embryos of C.elegans * Protocols for large scale in situ hybridization on C.elegans larvae

Proper citation: NEXTDB (RRID:SCR_004480) Copy   


  • RRID:SCR_004415

    This resource has 1+ mentions.

http://stemcellcommons.org/

Open source environment for sharing, processing and analyzing stem cell data bringing together stem cell data sets with tools for curation, dissemination and analysis. Standardization of the analytical approaches will enable researchers to directly compare and integrate their results with experiments and disease models in the Commons. Key features of the Stem Cell Commons * Contains stem cell related experiments * Includes microarray and Next-Generation Sequencing (NGS) data from human, mouse, rat and zebrafish * Data from multiple cell types and disease models * Carefully curated experimental metadata using controlled vocabularies * Export in the Investigation-Study-Assay tabular format (ISA-Tab) that is used by over 30 organizations worldwide * A community oriented resource with public data sets and freely available code in public code repositories such as GitHub Currently in development * Development of Refinery, a novel analysis platform that links Commons data to the Galaxy analytical engine * ChIP-seq analysis pipeline (additional pipelines in development) * Integration of experimental metadata and data files with Galaxy to guide users to choose workflows, parameters, and data sources Stem Cell Commons is based on open source software and is available for download and development.

Proper citation: Stem Cell Commons (RRID:SCR_004415) Copy   


  • RRID:SCR_004690

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/biosystems/

Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.

Proper citation: NCBI BioSystems Database (RRID:SCR_004690) Copy   


http://www.osc.riken.jp/english/

Omics Science Center is aiming to develop a comprehensive system called Life Science Accelerator(LSA) for the advancement of omics research. The LSA is a comprehensive system consists of biological resources, human resources, technologies, know-how, and essential administrative ability. Ultimate goal of LSA is to support and accelerate the advancement in life science research. Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.

Proper citation: RIKEN Omics Science Center (RRID:SCR_008241) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X