Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Database that contains updated information about the Escherichia coli K-12 genome and proteome sequences, including extensive gene bibliographies. Users are able to download customized tables, perform Boolean query comparisons, generate sets of paired DNA sequences, and download any E. coli K-12 genomic DNA sub-sequence. BLAST functions, microarray data, an alphabetical index of genes, and gene overlap queries are also available. The Database Table Downloads Page provides a full list of EG numbers cross-referenced to the new cross-database ECK numbers and other common accession numbers, as well as gene names and synonyms. Monthly release archival downloads are available, but the live, daily updated version of EcoGene is the default mysql database for download queries.
Proper citation: EcoGene (RRID:SCR_002437) Copy
Database for the bacterium Escherichia coli K-12 MG1655, the EcoCyc project performs literature-based curation of the entire genome, and of transcriptional regulation, transporters, and metabolic pathways. The long-term goal of the project is to describe the molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists, and for biologists who work with related microorganisms.
Proper citation: EcoCyc (RRID:SCR_002433) Copy
http://www.lipidmaps.org/data/proteome/LMPD.php
Database of lipid related proteins representing human and mouse proteins involved in lipid metabolism. Collection of lipid related genes and proteins contains data for genes and proteins from Homo sapiens, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae, Caenorhabditis elegans, Escherichia coli, Macaca mulata, Drosophila melanogaster, Arabidopsis thaliana and Danio rerio.
Proper citation: LIPID MAPS Proteome Database (RRID:SCR_003062) Copy
http://rankprop.gs.washington.edu/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on May,18,2020. Ranking algorithm that exploits global network structure of similarity relationships among proteins in database by performing diffusion operation on protein similarity network with weighted edges. Source code and web server for searching non-redundant protein database. Web server ranks proteins found in NRDB40 (from PairsDB) against query sequence of amino acids using Rankprop algorithm.
Proper citation: Rankprop - Protein Ranking by Network Propagation (RRID:SCR_007159) Copy
The HumanCyc database describes human metabolic pathways and the human genome. By presenting metabolic pathways as an organizing framework for the human genome, HumanCyc provides the user with an extended dimension for functional analysis of Homo sapiens at the genomic level. A computational pathway analysis of the human genome assigned human enzymes to predicted metabolic pathways. Pathway assignments place genes in their larger biological context, and are a necessary step toward quantitative modeling of metabolism. HumanCyc contains the complete genome sequence of Homo sapiens, as presented in Build 31. Data on the human genome from Ensembl, LocusLink and GenBank were carefully merged to create a minimally redundant human gene set to serve as an input to SRI''s PathoLogic software, which generated the database and predicted Homo sapiens metabolic pathways from functional information contained in the genome''s annotation. SRI did not re-annotate the genome, but worked with the gene function assignments in Ensembl, LocusLink, and GenBank. The resulting pathway/genome database (PGDB) includes information on 28,783 genes, their products and the metabolic reactions and pathways they catalyze. Also included are many links to other databases and publications. The Pathway Tools software/database bundle includes HumanCyc and the Pathway Tools software suite and is available under license. This form of HumanCyc is faster and more powerful than the Web version.
Proper citation: HumanCyc: Encyclopedia of Homo sapiens Genes and Metabolism (RRID:SCR_007050) Copy
Database of microRNA target predictions and expression profiles. Target predictions are based on a development of the miRanda algorithm which incorporates current biological knowledge on target rules and on the use of an up-to-date compendium of mammalian microRNAs. MicroRNA expression profiles are derived from a comprehensive sequencing project of a large set of mammalian tissues and cell lines of normal and disease origin. This website enables users to explore: * The set of genes that are potentially regulated by a particular microRNA. * The implied cooperativity of multiple microRNAs on a particular mRNA. * MicroRNA expression profiles in various mammalian tissues. The web resource provides users with functional information about the growing number of microRNAs and their interaction with target genes in many species and facilitates novel discoveries in microRNA gene regulation. The microRNA Target Detection Software, miRanda, is an algorithm for finding genomic targets for microRNAs. This algorithm has been written in C and is available as an open-source method under the GPL., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: microRNA.org (RRID:SCR_006997) Copy
http://physionet.org/physiobank/
Archive of well-characterized digital recordings of physiologic signals and related data for use by the biomedical research community. PhysioBank currently includes databases of multi-parameter cardiopulmonary, neural, and other biomedical signals from healthy subjects and patients with a variety of conditions with major public health implications, including sudden cardiac death, congestive heart failure, epilepsy, gait disorders, sleep apnea, and aging. The PhysioBank Archives now contain over 700 gigabytes of data that may be freely downloaded. PhysioNet is seeking contributions of data sets that can be made freely available in PhysioBank. Contributions of digitized and anonymized (deidentified) physiologic signals and time series of all types are welcome. If you have a data set that may be suitable, please review PhysioNet''s guidelines for contributors and contact them.
Proper citation: Physiobank (RRID:SCR_006949) Copy
http://www.birncommunity.org/collaborators/function-birn/
The FBIRN Federated Informatics Research Environment (FIRE) includes tools and methods for multi-site functional neuroimaging. This includes resources for data collection, storage, sharing and management, tracking, and analysis of large fMRI datasets. fBIRN is a national initiative to advance biomedical research through data sharing and online collaboration. BIRN provides data-sharing infrastructure, software tools, strategies and advisory services - all from a single source.
Proper citation: Function BIRN (RRID:SCR_007291) Copy
http://people.biochem.umass.edu/sfournier/fournierlab/snornadb/
A database of S. cerevisiae H/ACA and C/D box snoRNAs, useful for research on rRNA nucleotide modifications in the ribosome, especially those created by small nucleolar RNA:protein complexes (snoRNPs). The interactive service enables a user to visualize the positions of pseudouridines, 2'-O-methylations, and base methylations in three-dimensional space in the ribosome and also in linear and secondary structure formats of ribosomal RNA. The tools provide additional perspective on where the modifications occur relative to functional regions within the rRNA and relative to other nearby modifications. This package of tools is presented as a major enhancement of an existing but significantly upgraded yeast snoRNA database. The other key features of the enhanced database include details of the base pairing of snoRNAs with target RNAs, genomic organization of the yeast snoRNA genes, and information on corresponding snoRNAs and modifications in other model organisms.
Proper citation: Yeast snoRNA Database (RRID:SCR_007980) Copy
Web application and database designed for sharing, visualizing, and analyzing protein cross-linking mass spectrometry data with emphasis on structural analysis and quality control. Includes public and private data sharing capabilities, project based interface designed to ensure security and facilitate collaboration among multiple researchers. Used for private collaboration and public data dissemination.
Proper citation: Protein Cross-Linking Database (RRID:SCR_021027) Copy
Software tool for identification of cross-linked peptides from mass spectra. Used for analysis of chemically cross-linked protein complexes. Used to analyze both novel and existing data sets.
Proper citation: Kojak (RRID:SCR_021028) Copy
https://crispresso.pinellolab.partners.org/submission
Software suite of tools to qualitatively and quantitatively evaluate outcomes of genome editing experiments in which target loci are subject to deep sequencing and provides integrated, user friendly interface. Used for analysis of CRISPR-Cas9 genome editing outcomes from sequencing data. CRISPResso2 provides accurate and rapid genome editing sequence analysis.Used for analysis of deep sequencing data for rapid and intuitive interpretation of genome editing experiments.
Proper citation: CRISPResso (RRID:SCR_021538) Copy
https://github.com/nskvir/RepEnrich
Software tool to profile enrichment of next generation sequencing reads at transposable elements. Method to estimate repetitive element enrichment using high throughput sequencing data. Used to study genome wide transcriptional regulation of repetitive elements.RepEnrich2 is updated method to estimate repetitive element enrichment using high-throughput sequencing data.
Proper citation: RepEnrich (RRID:SCR_021733) Copy
https://vanvalen.github.io/about/
Software for segmenting individual cells in microscopy images using deep learning. Cell segmentation software.
Proper citation: DeepCell (RRID:SCR_022197) Copy
https://masst.gnps2.org/microbemasst/
Web taxonomically informed mass spectrometry search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging database of over 60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns.
Proper citation: microbeMASST (RRID:SCR_024713) Copy
The Dynamic Regulatory Events Miner (DREM) allows one to model, analyze, and visualize transcriptional gene regulation dynamics. The method of DREM takes as input time series gene expression data and static transcription factor-gene interaction data (e.g. ChIP-chip data), and produces as output a dynamic regulatory map. The dynamic regulatory map highlights major bifurcation events in the time series expression data and transcription factors potentially responsible for them. DREM 2.0 was released and supports a number of new features including: * new static binding data for mouse, human, D. melanogaster, A. thaliana * a new and more flexible implementation of the IOHMM supports dynamic binding data for each time point or as a mix of static/dynamic TF input * expression levels of TFs can be used to improve the models learned by DREM * the motif finder DECOD can be used in conjuction with DREM and help find DNA motifs for unannotated splits * new features for the visualization of expressed TFs, dragging boxes in the model view, and switching between representations
Proper citation: Dynamic Regulatory Events Miner (RRID:SCR_003080) Copy
http://ontodog.hegroup.org/index.php
Ontodog is a web-based ontology view generator. It can generate inSubset annotation ontology, user preferred label annotation ontology and subset of source ontology. Simply provide Ontodog input term file (Microsoft Excel file or tab-delimited text file), select one source ontology or enter your own source ontology and SPARQL endpoint, then set the settings for Ontodog output files and get the OWL (RDF/XML) Output files. Ontodog performs the basic ontology modularization-like function, i.e.,it automatically extracts all axioms and related terms associated with user-specified signature term(s). In addition, Ontodog includes extra features: (1) extracting all instance data associated with the retrieved class terms and annotations; and (2) recursively extracting all axioms and related terms indirectly associated with signature terms. More features are being added to Ontodog, such as relabeling preferred names for various ontology terms to fit in with the needs from a specific community. The Ontodog input data requires a source ontology and a list of user-specified signature terms in tab-delimited format. Ontodog provides the template files for generating the signature terms as the input terms file to download. There are several output options that the users can choose based on their needs. With more and more ontologies being developed, Ontodog offers a timely web-based package of solutions for ontology view generation. Ontodog provides an efficient approach to promote ontology sharing and interoperability. It is easy to use and does not require knowledge of SPARQL, script programming, and command line operation. Ontodog is developed to serve the ontology community for ontology reuse. It is freely available under the Apache License 2.0. The source code is made available under Apache License 2.0.
Proper citation: Ontodog: A Web-based Ontology View Generator (RRID:SCR_005061) Copy
http://simbios.stanford.edu/index.html
Simbios is the NIH Center for physics-based Simulation of Biological Structures. Simbios provides infrastructure, software, and training to help biomedical researchers understand biological form and function as they create novel drugs, synthetic tissues, medical devices, and surgical interventions. Simbios is investigating a wide scale of biological structures - from molecules to organisms. Driving biological problems include RNA folding, protein folding, myosin dynamics, cardiovascular dynamics, and neuromuscular biomechanics. Investigators interested in collaborating with Simbios can apply for NIH funding. To encourage collaboration in building accurate biological models and simulations, Simbios also provides the biomedical community with https://simtk.org, a free, secure, distributed, development system for projects. Projects may include models, software, data, documentation, publications, and graphics and have automatic backups and off-site storage. Projects may be public or private and have project-specific mailing lists, forums, bug & feature databases, news, blogs, and source-code repositories. Simbios is developing and disseminating the SimTK core simulation toolkit, (simtk.org/home/simtkcore). SimTK core is open-source software developed by experienced professionals. The software includes advanced capabilities for modeling the geometry and physics of biological systems. To ensure utility and accuracy, the software and training material is being developed and tested in close collaboration with biomedical scientists. Simbios has developed OpenSim, an application for advanced neuromuscular modeling that uses the SimTK toolkit, and is making it openly available at simtk.org/home/opensim. Simbios also publishes the Biomedical Computation Review, a magazine devoted to the science and tools in biocomputation, aimed at the community which encompasses the diverse biocomputation disciplines. To help researchers find high quality software and tools Simbios has also establishes the Simbiome an inventory of high-quality commercial and academic bio-simulation tools. Simbios has recurring openings for postdoctoral researchers.
Proper citation: Simbios (RRID:SCR_004320) Copy
http://www.sci.utah.edu/cibc-software/scirun.html
A Problem Solving Environment (PSE) for modeling, simulation and visualization of scientific problems. SCIRun now includes the biomedical components formally released as BioPSE, as well as BioMesh3D. BioMesh3D is a free, easy to use program for generating quality meshes for the use in biological simulations. The most recent stable release is version 4.6.
Proper citation: SCIRun (RRID:SCR_002541) Copy
Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.
Proper citation: ImageJ (RRID:SCR_003070) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.