Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 14 showing 261 ~ 280 out of 293 results
Snippet view Table view Download 293 Result(s)
Click the to add this resource to a Collection

http://www.cmhd.ca/genetrap/

Generate gene trap insertions using mutagenic polyA trap vectors, followed by sequence tagging to develop a library of mutagenized ES cells freely available to the scientific community. This library is searchable by sequence or key word searches including gene name or symbol, chromosome location, or Gene Ontology (GO) terms. In addition,they offer a custom email alert service in which researchers are able to submit search criteria. Researchers will receive automated e-mail notification of matching gene trap clones as they are entered into the library and database. The resource features the use of complementary second and third generation polyA trap vectors developed by the Stanford lab and the laboratory of Professor Yasumasa Ishida of the Nara Institute of Science and Technology (NAIST) in Japan to mutagenize murine embryonic stem (ES) cells. CMHD gene trap clones are distributed by the Canadian Mouse Mutant Repository(CMMR). Information about ordering, services, and pricing can be found on their web site (http://www.cmmr.ca/services/index.html)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.

Proper citation: Centre for Modeling Human Disease Gene Trap Resource (RRID:SCR_002785) Copy   


  • RRID:SCR_002680

    This resource has 10+ mentions.

https://simtk.org

A National NIH Center for Biomedical Computing that focuses on physics-based simulation of biological structures and provides open access to high quality simulation tools, accurate models and the people behind them. It serves as a repository for models that are published (as well as the associated code) to create a living archive of simulation scholarship. Simtk.org is organized into projects. A project represents a research endeavor, a software package or a collection of documents and publications. Includes sharing of image files, media, references to publications and manuscripts, as well as executables and applications for download and source code. Simulation tools are free to download and space is available for developers to manage, share and disseminate code.

Proper citation: Simtk.org (RRID:SCR_002680) Copy   


https://simtk.org/home/foldvillin

An archive of hundreds of all-atom, explicit solvent molecular dynamics simulations that were performed on a set of nine unfolded conformations of a variant of the villin headpiece subdomain (HP-35 NleNle). It includes scripts for accessing the archive of villin trajectories as well as a VMD plug-in for viewing the trajectories. In addition, all starting structures used in the trajectories are also provided. The simulations were generated using a distributed computing method utilizing the symmetric multiprocessing paradigm for individual nodes of the Folding_at_home distributed computing network. The villin trajectories in the archive are divided into two projects: PROJ3036 and PROJ3037. PROJ3036 contains trajectories starting from nine non-folded configurations. PROJ3037 contains trajectories starting from the native (folded) state. Runs 0 through 8 (in PROJ3036) correspond to starting configurations 0 through 8 discussed in the paper in J. Mol. Biol. (2007) 374(3):806-816 (see the publications tab for a full reference), whereas RUN9 uses the same starting configuration as RUN8. Each run contains 100 trajectories (named clone 0-99), each with the same starting configuration but different random velocities. Trajectories vary in their length of time and are subdivided into frames, also known as a generation. Each frame contains around 400 configurational snapshots, or timepoints, of the trajectory, with the last configurational snapshot of frame i corresponding to the first configurational snapshot of generation i+1. The goal is to allow researchers to analyze and benefit from the many trajectories produced through the simulations.

Proper citation: Molecular Simulation Trajectories Archive of a Villin Variant (RRID:SCR_002704) Copy   


  • RRID:SCR_002846

    This resource has 5000+ mentions.

http://hapmap.ncbi.nlm.nih.gov/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A multi-country collaboration among scientists and funding agencies to develop a public resource where genetic similarities and differences in human beings are identified and catalogued. Using this information, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. All of the information generated by the Project will be released into the public domain. Their goal is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. HapMap project related data, software, and documentation include: bulk data on genotypes, frequencies, LD data, phasing data, allocated SNPs, recombination rates and hotspots, SNP assays, Perlegen amplicons, raw data, inferred genotypes, and mitochondrial and chrY haplogroups; Generic Genome Browser software; protocols and information on assay design, genotyping and other protocols used in the project; and documentation of samples/individuals and the XML format used in the project.

Proper citation: International HapMap Project (RRID:SCR_002846) Copy   


  • RRID:SCR_003052

    This resource has 50+ mentions.

http://www.compucell3d.org/

Open-source simulation environment for multi-cell, single-cell-based modeling of tissues, organs and organisms. It uses Cellular Potts Model to model cell behavior.

Proper citation: CompuCell3D (RRID:SCR_003052) Copy   


https://sparc.science/about/consortia/precision

Project titled Program to Reveal and Evaluate Cells-to-gene Information that Specify Intricacies, Origins, and Nature of Human Pain (PRECISION) Network to develop meaningful resource for knowledge transfer, and to integrate and share Human Pain Associated Genes and Cell Datasets. Building knowledge platform to visualize, query, and interact with these data will support researchers and help accelerate dissemination of vital data to the larger scientific community. These goals align with NIH Helping to End Addiction Long-term (HEAL) Initiative, which seeks to accelerate the discovery and successful translation of non-addictive pain therapeutics. PRECISION Human Pain Network will leverage prior interdisciplinary collaboration to create workflows, tools, and infrastructure to define data and metadata types, to improve data management and sharing, and to integrate datasets and visualization tools.

Proper citation: NIH PRECISION Human Pain Network (RRID:SCR_025458) Copy   


  • RRID:SCR_026239

https://github.com/jefftc/changlab

Software system for performing bioinformatics analyses. System includes knowledge base where the capabilities of bioinformatics software is explicitly and formally encoded. Backwards-chaining rule-based expert system comprised of data model that can capture richness of biological data, and inference engine that reasons on knowledge base to produce workflows. Knowledge base is populated with rules to analyze microarray and next generation sequencing data.

Proper citation: BETSY (RRID:SCR_026239) Copy   


  • RRID:SCR_025580

    This resource has 100+ mentions.

https://www.pharmgkb.org/

NIH-funded resource that provides information about how human genetic variation affects response to medications. PharmGKB collects, curates and disseminates knowledge about clinically actionable gene-drug associations and genotype-phenotype relationships.

Proper citation: PharmKGB (RRID:SCR_025580) Copy   


https://dpcpsi.nih.gov/onr/nrcc

Coordinates nutritional sciences-related research and research training across the National Institutes of Health (NIH) and among Federal Agencies by providing mechanisms to communicate research, research training, policy, and education initiatives. The DNRC facilitates the exchange of information, coordinates workshops and seminars on critical issues, encourages national and international research collaborations, and serves as the NIH primary point of contact for the Department of Health and Human Services (DHHS) and other agencies, departments, and organizations in matters pertaining to nutritional sciences and physical activity. Through its dedicated efforts to promote scientific policy reviews, innovative research, interagency collaboration, and technical advancements, the DNRC strives to define the increasing roles of nutritional sciences and physical activity in health promotion and disease prevention and treatment.

Proper citation: NIH Division of Nutrition Research Coordination (RRID:SCR_001469) Copy   


https://www.pathology.umn.edu/research/liver-tissue-cell-distribution-system

Tissue bank that provides human liver tissue from regional centers for distribution to scientific investigators throughout the United States. These USA regional centers have active liver transplant programs with human subjects approval to provide portions of the resected pathologic liver for which the transplant is performed.

Proper citation: Minnesota Liver Tissue Cell Distribution System (RRID:SCR_004840) Copy   


http://udn.nichd.nih.gov/brainatlas_home.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 1, 2019. The first brain atlas for the common marmoset to be made available since a printed atlas by Stephan, Baron and Schwerdtfeger published in 1980. It is a combined histological and magnetic resonance imaging (MRI) atlas constructed from the brains of two adult female marmosets. Histological sections were processed from Nissl staining and digitized to produce an atlas in a large format that facilitates visualization of structures with significant detail. Naming of identifiable brain structures was performed utilizing current terminology. For the present atlas, an adult female was perfused through the heart with PBS followed by 10% formalin. The brain was then sent to Neuroscience Associates of Knoxville, TN, who prepared the brain for histological analysis. The brain was cut in the coronal (frontal) plane at 40 microns, every sixth section stained for Nissl granules with thionine and every seventh section stained for myelinated fibers with the Weil technique. The mounted sections were photographed at the NIH (Medical Arts and Photography Branch). The equipment used was a Nikon Multiphot optical bench with Zeiss Luminar 100 mm lens, and scanned with a Better Light 6100 scan back driven by Better Light Viewfinder 5.3 software. The final images were saved as arrays of 6000x8000 pixels in Adobe Photoshop 6.0. A scale in mm provided with these images permitted construction of the final Nissl atlas files with a horizontal and vertical scale. Some additional re-touching (brightness and contrast) was done with Adobe Photoshop Elements 2.0. The schematic (labeled) atlas plates were created from the Nissl images. The nomenclature came almost exclusively from brainmaps.org, where a rhesus monkey brain with structures labeled can be found. The labels for the MRI images were placed by M. R. Zametkin, under supervision from Dr. Newman.

Proper citation: Brain atlas of the common marmoset (RRID:SCR_005135) Copy   


  • RRID:SCR_004880

    This resource has 1+ mentions.

http://frederick.cancer.gov/

A federally funded research and development center dedicated to biomedical research. NCI-Frederick partners with university, government, and corporate scientists to speed the translation of laboratory research into new diagnostic tests and treatments for cancer and HIV/AIDS. NCI-Frederick is comprised of more than 2,800 government- and contractor-employed biomedical researchers, laboratory technicians, and support staff and several cancer research centers. The FNLCR provides quick response capabilities and meets special long-term research and development needs for NCI that cannot be met as effectively by existing in-house or contractor resources.

Proper citation: NCI-Frederick (RRID:SCR_004880) Copy   


  • RRID:SCR_005499

http://science.education.nih.gov/SciEdBlog

A blog put out by the NIH Office of Science Education.

Proper citation: NIH SciEd Blog (RRID:SCR_005499) Copy   


http://llama.mshri.on.ca/funcassociate/

A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool

Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy   


  • RRID:SCR_007092

http://crcview.hegroup.org/

Web-based microarray data analysis and visualization system powered by CRC, or Chinese Restaurant cluster, a Dirichlet process model-based clustering algorithm recently developed by Dr. Steve Qin. It also incorporates several gene expression analysis programs from Bioconductor, including GOStats, genefilter, and Heatplus. CRCView also installs from the Bioconductor system 78 annotation libraries of microarray chips for human (31), mouse (24), rat (14), zebrafish (1), chicken (1), Drosophila (3), Arabidopsis (2), Caenorhabditis elegans (1), and Xenopus Laevis (1). CRCView allows flexible input data format, automated model-based CRC clustering analysis, rich graphical illustration, and integrated Gene Ontology (GO)-based gene enrichment for efficient annotation and interpretation of clustering results. CRC has the following features comparing to other clustering tools: 1) able to infer number of clusters, 2) able to cluster genes displaying time-shifted and/or inverted correlations, 3) able to tolerate missing genotype data and 4) provide confidence measure for clusters generated. You need to register for an account in the system to store your data and analyses. The data and results can be visited again anytime you log in.

Proper citation: CRCView (RRID:SCR_007092) Copy   


  • RRID:SCR_002186

    This resource has 10+ mentions.

http://www.midasplatform.org/

Open-source toolkit that enables the rapid creation of tailored, web-enabled data storage and provides a cohesive system for data management, visualization, and processing. At its core, Midas Platform is implemented as a PHP modular framework with a backend database (PostGreSQL, MySQL and non-relational databases). While the Midas Platform system can be installed and deployed without any customization, the framework has been designed with customization in mind. As building one system to fit all is not optimal, the framework has been extended to support plugins and layouts. Through integration with a range of other open-source toolkits, applications, or internal proprietary workflows, Midas Platform offers a solid foundation to meet the needs of data-centric computing. Midas Platform provides a variety of data access methods, including web, file system and DICOM server interfaces, and facilitates extending the methods in which data is stored to other relational and non-relational databases.

Proper citation: Midas Platform (RRID:SCR_002186) Copy   


http://www.sph.umich.edu/csg/abecasis/CaTS

Software tool for carrying out power calculations for large genetic association studies, including two stage genome wide association studies.

Proper citation: Calculator for Association with Two Stage design (RRID:SCR_007238) Copy   


  • RRID:SCR_016064

    This resource has 1000+ mentions.

http://compbio.cs.princeton.edu/conservation/

Software for scoring protein sequence conservation using the Jensen-Shannon divergence. It can be used to predict catalytic sites and residues near bound ligands.

Proper citation: Conservation (RRID:SCR_016064) Copy   


  • RRID:SCR_019135

    This resource has 50+ mentions.

https://github.com/marbl/Mash

Software tool for genome and metagenome distance estimation using MinHash. Reduces large sequences and sequence sets to small, representative sketches, from which global mutation distances can be rapidly estimated.

Proper citation: Mash (RRID:SCR_019135) Copy   


  • RRID:SCR_023679

https://cosmiic.org/

Open source neurostimulation and recording hardware instrument platform. Part of the SPARC project. COSMIIC is based on the Networked Neuroprosthesis developed at Case Western Reserve University.

Proper citation: COSMIIC HORNET (RRID:SCR_023679) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X