Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 13 showing 241 ~ 260 out of 1,660 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_010863

    This resource has 10+ mentions.

http://ranger.sourceforge.net/

Software for a multi-purpose ChIP Seq peak caller.

Proper citation: PeakRanger (RRID:SCR_010863) Copy   


  • RRID:SCR_010914

    This resource has 100+ mentions.

http://biodoop-seal.sourceforge.net/

A suite of distributed software applications for aligning short DNA reads, and manipulating and analyzing short read alignments.

Proper citation: SEAL (RRID:SCR_010914) Copy   


  • RRID:SCR_010874

    This resource has 10+ mentions.

http://cran.r-project.org/web/packages/DIME/index.html

R-package for identifying differential ChIP-seq based on an ensemble of mixture models.

Proper citation: DIME (RRID:SCR_010874) Copy   


  • RRID:SCR_010911

http://sourceforge.net/apps/mediawiki/cloudburst-bio/index.php?title=CloudBurst

A new parallel read-mapping algorithm optimized for mapping next-generation sequence data to the human genome and other reference genomes, for use in a variety of biological analyses including SNP discovery, genotyping, and personal genomics.

Proper citation: CloudBurst (RRID:SCR_010911) Copy   


  • RRID:SCR_003499

    This resource has 100+ mentions.

http://regulondb.ccg.unam.mx/

Database on transcriptional regulation in Escherichia coli K-12 containing knowledge manually curated from original scientific publications, complemented with high throughput datasets and comprehensive computational predictions. Graphic and text-integrated environment with friendly navigation where regulatory information is always at hand. They provide integrated views to understand as well as organized knowledge in computable form. Users may submit data to make it publicly available.

Proper citation: RegulonDB (RRID:SCR_003499) Copy   


  • RRID:SCR_002671

    This resource has 10+ mentions.

http://www.tanpaku.org/autophagy/

Database that provides basic, up-to-date information on relevant literature, and a list of autophagy-related proteins and their homologs in eukaryotes.

Proper citation: Autophagy Database (RRID:SCR_002671) Copy   


http://mistdb.com

Database which contains the signal transduction proteins for complete and draft bacterial and archaeal genomes. The MiST2 database identifies and catalogs the repertoire of signal transduction proteins in microbial genomes.

Proper citation: MiST - Microbial Signal Transduction database (RRID:SCR_003166) Copy   


  • RRID:SCR_003255

    This resource has 10+ mentions.

http://ndbserver.rutgers.edu/

A database of three-dimensional structural information about nucleic acids and their complexes. In addition to primary data, it contains derived geometric data, classifications of structures and motifs, standards for describing nucleic acid features, as well as tools and software for the analysis of nucleic acids. A variety of search capabilities are available, as are many different types of reports. NDB maintains the macromolecular Crystallographic Information File (mmCIF).

Proper citation: Nucleic Acid Database (RRID:SCR_003255) Copy   


  • RRID:SCR_003496

    This resource has 10000+ mentions.

http://www.ncbi.nlm.nih.gov/RefSeq/

Collection of curated, non-redundant genomic DNA, transcript RNA, and protein sequences produced by NCBI. Provides a reference for genome annotation, gene identification and characterization, mutation and polymorphism analysis, expression studies, and comparative analyses. Accessed through the Nucleotide and Protein databases.

Proper citation: RefSeq (RRID:SCR_003496) Copy   


  • RRID:SCR_003251

    This resource has 10+ mentions.

http://mutdb.org/

Database with annotations for human variation data with protein structural information and other functionally relevant information, if available. The mutations are organized by gene.

Proper citation: MutDB (RRID:SCR_003251) Copy   


  • RRID:SCR_003389

    This resource has 100+ mentions.

http://compbio.uthsc.edu/miRSNP/

Database of naturally occurring DNA variations in microRNA (miRNA) seed regions and miRNA target sites. MicroRNAs pair to the transcripts of protein-coding genes and cause translational repression or mRNA destabilization. SNPs and INDELs in miRNAs and their target sites may affect miRNA-mRNA interaction, and hence affect miRNA-mediated gene repression. The PolymiRTS database was created by scanning 3'UTRs of mRNAs in human and mouse for SNPs and INDELs in miRNA target sites. Then, the potential downstream effects of these polymorphisms on gene expression and higher-order phenotypes are identified. Specifically, genes containing PolymiRTSs, cis-acting expression QTLs, and physiological QTLs in mouse and the results of genome-wide association studies (GWAS) of human traits and diseases are linked in the database. The PolymiRTS database also includes polymorphisms in target sites that have been supported by a variety of experimental methods and polymorphisms in miRNA seed regions.

Proper citation: PolymiRTS (RRID:SCR_003389) Copy   


  • RRID:SCR_003331

    This resource has 100+ mentions.

http://www.phi-base.org/

Database that catalogs experimentally verified pathogenicity, virulence and effector genes from fungal, Oomycete and bacterial pathogens, which infect animal, plant, fungal and insect hosts. It is an invaluable resource in the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. In collaboration with the FRAC team, it also includes antifungal compounds and their target genes. Each entry is curated by domain experts and is supported by strong experimental evidence (gene disruption experiments, STM etc), as well as literature references in which the original experiments are described. Each gene is presented with its nucleotide and deduced amino acid sequence, as well as a detailed description of the predicted protein's function during the host infection process. To facilitate data interoperability, genes have been annotated using controlled vocabularies and links to external sources (Gene Ontology terms, EC Numbers, NCBI taxonomy, EMBL, PubMed and FRAC).

Proper citation: PHI-base (RRID:SCR_003331) Copy   


  • RRID:SCR_004321

    This resource has 100+ mentions.

http://sideeffects.embl.de/

Database containing information on marketed medicines and their recorded adverse drug reactions. The information is extracted from public documents and package inserts. The available information include side effect frequency, drug and side effect classifications as well as links to further information, for example drug-target relations. The SIDER Side Effect Resource represents an effort to aggregate dispersed public information on side effects. To our knowledge, no such resource exist in machine-readable form despite the importance of research on drugs and their effects. The creation of this resource was motivated by the many requests for data that we received related to our paper (Campillos, Kuhn et al., Science, 2008, 321(5886):263-6.) on the utilization of side effects for drug target prediction. Inclusion of side effects as readouts for drug treatment should have many applications and we hope to be able to enhance the respective research with this resource. You may browse the drugs by name, browse the side effects by name, download the current version of SIDER, or use the search interface.

Proper citation: SIDER (RRID:SCR_004321) Copy   


  • RRID:SCR_004477

    This resource has 10+ mentions.

http://www.uniprot.org/taxonomy/

NEWT is the taxonomy database maintained by the UniProt group. It integrates taxonomy data compiled in the NCBI database and data specific to the UniProt Knowledgebase. Browse by hierarchy, List all, or Complete proteomes. Organisms are classified in a hierarchical tree structure. Our taxonomy database contains every node (taxon) of the tree. UniProtKB taxonomy data is manually curated: next to manually verified organism names, we provide a selection of external links, organism strains and viral host information. Species with protein sequences stored in the UniProt Knowledgebase are named according to UniProt nomenclature. We endeavour to maintain a list of manually curated species names for which protein sequence data is available. In particular, we have adopted a systematic convention for naming viral and bacterial strains and isolates. Links to external sites are chosen by the UniProt taxonomy team and show pictures and various scientific data of interest (taxonomy, biology, physiology,...).

Proper citation: NEWT (RRID:SCR_004477) Copy   


http://selectome.unil.ch/

Database of positive selection based on a rigorous branch-site specific likelihood test. Positive selection is detected using CODEML on all branches of animal gene trees.

Proper citation: Selectome: a Database of Positive Selection (RRID:SCR_004542) Copy   


  • RRID:SCR_004856

    This resource has 10+ mentions.

http://www.ebi.ac.uk/biosamples/

Database that aggregates sample information for reference samples (e.g. Coriell Cell lines) and samples for which data exist in one of the EBI''''s assay databases such as ArrayExpress, the European Nucleotide Archive or PRoteomics Identificates DatabasE. It provides links to assays for specific samples, and accepts direct submissions of sample information. The goals of the BioSample Database include: # recording and linking of sample information consistently within EBI databases such as ENA, ArrayExpress and PRIDE; # minimizing data entry efforts for EBI database submitters by enabling submitting sample descriptions once and referencing them later in data submissions to assay databases and # supporting cross database queries by sample characteristics. The database includes a growing set of reference samples, such as cell lines, which are repeatedly used in experiments and can be easily referenced from any database by their accession numbers. Accession numbers for the reference samples will be exchanged with a similar database at NCBI. The samples in the database can be queried by their attributes, such as sample types, disease names or sample providers. A simple tab-delimited format facilitates submissions of sample information to the database, initially via email to biosamples (at) ebi.ac.uk. Current data sources: * European Nucleotide Archive (424,811 samples) * PRIDE (17,001 samples) * ArrayExpress (1,187,884 samples) * ENCODE cell lines (119 samples) * CORIELL cell lines (27,002 samples) * Thousand Genome (2,628 samples) * HapMap (1,417 samples) * IMSR (248,660 samples)

Proper citation: BioSample Database at EBI (RRID:SCR_004856) Copy   


  • RRID:SCR_004694

    This resource has 1000+ mentions.

http://www.yeastgenome.org/

A curated database that provides comprehensive integrated biological information for Saccharomyces cerevisiae along with search and analysis tools to explore these data. SGD allows researchers to discover functional relationships between sequence and gene products in fungi and higher organisms. The SGD also maintains the S. cerevisiae Gene Name Registry, a complete list of all gene names used in S. cerevisiae which includes a set of general guidelines to gene naming. Protein Page provides basic protein information calculated from the predicted sequence and contains links to a variety of secondary structure and tertiary structure resources. Yeast Biochemical Pathways allows users to view and search for biochemical reactions and pathways that occur in S. cerevisiae as well as map expression data onto the biochemical pathways. Literature citations are provided where available.

Proper citation: SGD (RRID:SCR_004694) Copy   


  • RRID:SCR_004726

    This resource has 10000+ mentions.

http://pfam.xfam.org/

A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).

Proper citation: Pfam (RRID:SCR_004726) Copy   


http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi

A web server and database that organizes, analyzes and predicts interactions between proteins and other biomolecules. For a given protein sequence or structure query, it reports protein-protein, protein-small molecule, protein nucleic acids and protein-ion interactions observed in experimentally-determined structural biological assemblies. It also infers/predicts interacting partners and binding sites by homology, by inspecting the protein complexes formed by close homologs of a given query. To ensure biological relevance of inferred binding sites, the IBIS algorithm clusters binding sites formed by homologs based on binding site sequence and structure conservation.

Proper citation: IBIS: Inferred Biomolecular Interactions Server (RRID:SCR_004886) Copy   


  • RRID:SCR_004933

    This resource has 500+ mentions.

http://solgenomics.net/

A clade oriented, community curated database containing genomic, genetic, phenotypic and taxonomic information for plant genomes. Genomic information is presented in a comparative format and tied to important plant model species such as Arabidopsis. SGN provides tools such as: BLAST searches, the SolCyc biochemical pathways database, a CAPS experiment designer, an intron detection tool, an advanced Alignment Analyzer, and a browser for phylogenetic trees. The SGN code and database are developed as an open source project, and is based on database schemas developed by the GMOD project and SGN-specific extensions.

Proper citation: SGN (RRID:SCR_004933) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X