Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A comparative platform for green plant genomics. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology / paralogy relationships as well as clade specific genes and gene expansions. As of release v9.1, Phytozome provides access to forty-one sequenced and annotated green plant genomes which have been clustered into gene families at 20 evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are hyper-linked and searchable., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Phytozome (RRID:SCR_006507) Copy
http://rice.plantbiology.msu.edu/
Database and resource that provides sequence and annotation data for the rice genome. This website provides genome sequence from the Nipponbare subspecies of rice and annotation of the 12 rice chromosomes. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 75 tracks of annotation. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads. Rice is a model species for the monocotyledonous plants and the cereals which are the greatest source of food for the world''s population. While rice genome sequence is available through multiple sequencing projects, high quality, uniform annotation is required in order for genome sequence data to be fully utilized by researchers. The existence of a common gene set and uniform annotation allows researchers within the rice community to work from a common resource so that their results can be more easily interpreted by other scientists. The objective of this project has always been to provide high quality annotation for the rice genome. They generated, refined and updated gene models for the estimated 40,000-60,000 total rice genes, provided standardized annotation for each model, linked each model to functional annotation including expression data, gene ontologies, and tagged lines. They have provided a resource to extend the annotation of the rice genome to other plant species by providing comparative alignments to other plant species. Analysis/Tools are available including: BLAST, Locus Name Search, Functional Term Search, Protein Domain Search, Anatomy Expression Viewer, Highly Expressed Genes
Proper citation: Rice Genome Annotation (RRID:SCR_006663) Copy
DPVweb provides a central source of information about viruses, viroids and satellites of plants, fungi and protozoa. Comprehensive taxonomic information, including brief descriptions of each family and genus, and classified lists of virus sequences are provided. The database also holds detailed, curated, information for all sequences of viruses, viroids and satellites of plants, fungi and protozoa that are complete or that contain at least one complete gene. For comparative purposes, it also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA genome. The start and end positions of each feature (gene, non-translated region and the like) have been recorded and checked for accuracy. As far as possible, nomenclature for genes and proteins are standardized within genera and families. Sequences of features (either as DNA or amino acid sequences) can be directly downloaded from the website in FASTA format. The sequence information can also be accessed via client software for PC computers (freely downloadable from the website) that enable users to make an easy selection of sequences and features of a chosen virus for further analyses. The public sequence databases contain vast amounts of data on virus genomes but accessing and comparing the data, except for relatively small sets of related viruses can be very time consuming. The procedure is made difficult because some of the sequences on these databases are incorrectly named, poorly annotated or redundant. The NCBI Reference Sequence project (1) provides a comprehensive, integrated, non-redundant set of sequences, including genomic DNA, transcript (RNA) and protein products, for major research organisms. This now includes curated information for a single sequence of each fully sequenced virus species. While this is a welcome development, it can only deal with complete sequences. An important feature of DPV is the opportunity to access genes (and other features) of multiple sequences quickly and accurately. Thus, for example, it is easy to obtain the nucleotide or amino acid sequences of all the available accessions of the coat protein gene of a given virus species or for a group of viruses. To increase its usefulness further, DPVweb also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA (ssDNA) genome. Sponsors: This site is supported by the Association of Applied Biologists and the Zhejiang Academy of Agricultural Sciences, Hangzhou, People''s Republic of China.
Proper citation: Descriptions of Plant Viruses (RRID:SCR_006656) Copy
We at NRSP-8 bioinformatics coordination program strive to serve the animal genomics research community to better use computer tools and methods, to best utilize available resources, and in working with researchers in the community, to effectively share, combine, manage, manipulate, and analyze information from genomics/genetics studies. This site is designed as an information center to serve the national animal genome research projects of cattle, chicken, pigs, sheep, horse, and aquaculture species. This is home to databases and web sites (being) built for structural, functional and application oriented studies of the animal genomics, to serve the purpose of research, education and related activities in the scientific, industrial and educational communities in the states and world wide. The challenges in bioinformatics support/research for animal genomics may involve * Effective data collection, organization and management * Rapid development of most needed bioinformatics tools and resources * Efficient use of these tools for innovative data analysis Projects: * Animal Trait Ontology (ATO) Project * Virtual Comparative Genomics * The Past, the Current, and the Potentials * Collaborative and Hosted Works
Proper citation: NAGRP Bioinformatics Coordination Program (RRID:SCR_006564) Copy
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
Consortium that puts sequences into a chromosome context and provides the best possible reference assembly for human, mouse, and zebrafish via FTP. Tools to facilitate the curation of genome assemblies based on the sequence overlaps of long, high quality sequences.
Proper citation: Genome Reference Consortium (RRID:SCR_006553) Copy
The EBI genomes pages give access to a large number of complete genomes including bacteria, archaea, viruses, phages, plasmids, viroids and eukaryotes. Methods using whole genome shotgun data are used to gain a large amount of genome coverage for an organism. WGS data for a growing number of organisms are being submitted to DDBJ/EMBL/GenBank. Genome entries have been listed in their appropriate category which may be browsed using the website navigation tool bar on the left. While organelles are all listed in a separate category, any from Eukaryota with chromosome entries are also listed in the Eukaryota page. Within each page, entries are grouped and sorted at the species level with links to the taxonomy page for that species separating each group. Within each species, entries whose source organism has been categorized further are grouped and numbered accordingly. Links are made to: * taxonomy * complete EMBL flatfile * CON files * lists of CON segments * Project * Proteomes pages * FASTA file of Proteins * list of Proteins
Proper citation: EBI Genomes (RRID:SCR_002426) Copy
http://www.broad.mit.edu/annotation/fungi/fgi/
Produces and analyzes sequence data from fungal organisms that are important to medicine, agriculture and industry. The FGI is a partnership between the Broad Institute and the wider fungal research community, with the selection of target genomes governed by a steering committee of fungal scientists. Organisms are selected for sequencing as part of a cohesive strategy that considers the value of data from each organism, given their role in basic research, health, agriculture and industry, as well as their value in comparative genomics.
Proper citation: Fungal Genome Initiative (RRID:SCR_003169) Copy
http://aws.amazon.com/1000genomes/
A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.
Proper citation: 1000 Genomes Project and AWS (RRID:SCR_008801) Copy
http://www.sanger.ac.uk/Projects/Fungi/
Fungal genomes available from the Sanger Institute. Data are accessible in a number of ways; for each organism there is a BLAST server, allowing search of the sequences. Sequences can also be down-loaded directly by FTP. In addition, for those organisms being sequenced using a cosmid approach, finished and annotated cosmids are submitted to EMBL and other public databases.
Proper citation: Fungi Sequencing Projects (RRID:SCR_008524) Copy
The web portal provides comprehensive local database of human genome variants with a user-friendly web page that provides a one-stop annotating and funtonal prediction service which is both convenient and up-to-date. A query can be accepted as either a dbSNP Id or a chromosomal location and our system will instantly provide all the annotation information in an interactive LD panel. The system can also simultaneously prioritize this variant based on additive effect mode by corresponding annotation information and evaluate the variant effect that is then displayed in a prioritization tree. Furthermore, cohort sequencing continuously produces lots of un-annotated variants such as rare variants or de novo variants, and our system can even fit this data by accepting genomic coordinates (hg19) to offer maximal annotations. Main Functions Over 40 up-to-date annotation items for human single nucleotide variations; Functional prediction for different types of variants; Dynamic LD panel for both HapMap and 1000 Genomes Project populations; Prioritization score and tree viewer based on variant functional model.
Proper citation: SNVrap (RRID:SCR_010512) Copy
http://bio-bwa.sourceforge.net/
Software for aligning sequencing reads against large reference genome. Consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. First for sequence reads up to 100bp, and other two for longer sequences ranged from 70bp to 1Mbp.
Proper citation: BWA (RRID:SCR_010910) Copy
https://www.genome-cloud.com/user/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 29, 2019. A cloud platform for next-generation sequencing analysis and storage. Services include: * g-Analysis: Automated genome analysis pipelines at your fingertips * g-Cluster: Easy-of-use and cost-effective genome research infrastructure * g-Storage: A simple way to store, share and protect data * g-Insight: Accurate analysis and interpretation of biological meaning of genome data
Proper citation: GenomeCloud (RRID:SCR_011886) Copy
Web based instant protein network modeler for newly sequenced species. Web server designed to instantly construct genome scale protein networks using protein sequence data. Provides network visualization, analysis pages and solution for instant network modeling of newly sequenced species.
Proper citation: JiffyNet (RRID:SCR_011954) Copy
Catalog of published genome-wide association studies. Genome-wide set of genetic variants in different individuals to see if any variant is associated with trait and disease. Database of genome-wide association study (GWAS) publications including only those attempting to assay single nucleotide polymorphisms (SNPs). Publications are organized from most to least recent date of publication. Studies are identified through weekly PubMed literature searches, daily NIH-distributed compilations of news and media reports, and occasional comparisons with an existing database of GWAS literature (HuGE Navigator). Works with HANCESTRO ancestry representation.
Proper citation: GWAS: Catalog of Published Genome-Wide Association Studies (RRID:SCR_012745) Copy
Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.
Proper citation: KEGG (RRID:SCR_012773) Copy
A high-quality integrated knowledge resource specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility complex (MHC) of human and other vertebrate species, and in the immunoglobulin superfamily (IgSF), MHC superfamily (MhcSF) and related proteins of the immune system (RPI) of vertebrates and invertebrates, serving as the global reference in immunogenetics and immunoinformatics. IMGT provides a common access to sequence, genome and structure Immunogenetics data, based on the concepts of IMGT-ONTOLOGY and on the IMGT Scientific chart rules. IMGT works in close collaboration with EBI (Europe), DDBJ (Japan) and NCBI (USA). IMGT consists of sequence databases, genome database, structure database, and monoclonal antibodies database, Web resources and interactive tools.
Proper citation: IMGT - the international ImMunoGeneTics information system (RRID:SCR_012780) Copy
http://www-sequence.stanford.edu/group/candida/
The Stanford Genome Technology Center began a whole genome shotgun sequencing of strain SC5314 of Candida albicans. After reaching its original goal of 1.5X mean coverage of the haploid genome (16Mb) in summer, 1998, Stanford was awarded a supplemental grant to continue sequencing up to a coverage of 10X, performing as much assembly of the sequence as possible, using recognizable genes as nucleation points. Candida albicans is one of the most commonly encountered human pathogens, causing a wide variety of infections ranging from mucosal infections in generally healthy persons to life-threatening systemic infections in individuals with impaired immunity. Oral and esophogeal Candida infections are frequently seen in AIDS patients. Few classes of drugs are effective against these fungal infections, and all of them have limitations with regard to efficacy and side-effects.
Proper citation: Sequencing of Candida Albicans (RRID:SCR_013437) Copy
Functional genomic database for malaria parasites. Database for Plasmodium spp. Provides resource for data analysis and visualization in gene-by-gene or genome-wide scale. PlasmoDB 5.5 contains annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution data. Data can be queried by selecting from query grid or drop down menus. Results can be combined with each other on query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.Key community database for malaria researchers, intersecting many types of laboratory and computational data, aggregated by gene.
Proper citation: PlasmoDB (RRID:SCR_013331) Copy
Database for ESTs (Expressed Sequence Tags), consensus sequences, bacterial artificial chromosome (BAC) clones, BES (BAC End Sequences). They have generated 69,545 ESTs from 6 full-length cDNA libraries (Porcine Abdominal Fat, Porcine Fat Cell, Porcine Loin Muscle, Liver and Pituitary gland). They have also identified a total of 182 BAC contigs from chromosome 6. It is very valuable resources to study porcine quantitative trait loci (QTL) mapping and genome study. Users can explore genomic alignment of various data types, including expressed sequence tags (ESTs), consensus sequences, singletons, QTL, Marker, UniGene and BAC clones by several options. To estimate the genomic location of sequence dataset, their data aligned BES (BAC End Sequences) instead of genomic sequence because Pig Genome has low-coverage sequencing data. Sus scrofa Genome Database mainly provide comparative map of four species (pig, cattle, dog and mouse) in chromosome 6.
Proper citation: PiGenome (RRID:SCR_013394) Copy
http://bioinformatics.psb.ugent.be/ENIGMA/
A software tool to extract gene expression modules from perturbational microarray data, based on the use of combinatorial statistics and graph-based clustering. The modules are further characterized by incorporating other data types, e.g. GO annotation, protein interactions and transcription factor binding information, and by suggesting regulators that might have an effect on the expression of (some of) the genes in the module. Version : ENIGMA 1.1 used GO annotation version : Aug 29th 2007
Proper citation: ENIGMA (RRID:SCR_013400) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.