Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Multi-institutional supported website and database that provides access to large number of globally used lipidomics resources. Internationally led the field of lipid curation, classification, and nomenclature since 2003. Produces new open-access databases, informatics tools and lipidomics-focused training activities will be generated and made publicly available for researchers studying lipids in health and disease.
Proper citation: LIPID Metabolites And Pathways Strategy (RRID:SCR_006579) Copy
Service providing functional analysis of proteins by classifying them into families and predicting domains and important sites. They combine protein signatures from a number of member databases into a single searchable resource, capitalizing on their individual strengths to produce a powerful integrated database and diagnostic tool. This integrated database of predictive protein signatures is used for the classification and automatic annotation of proteins and genomes. InterPro classifies sequences at superfamily, family and subfamily levels, predicting the occurrence of functional domains, repeats and important sites. InterPro adds in-depth annotation, including GO terms, to the protein signatures. You can access the data programmatically, via Web Services. The member databases use a number of approaches: # ProDom: provider of sequence-clusters built from UniProtKB using PSI-BLAST. # PROSITE patterns: provider of simple regular expressions. # PROSITE and HAMAP profiles: provide sequence matrices. # PRINTS provider of fingerprints, which are groups of aligned, un-weighted Position Specific Sequence Matrices (PSSMs). # PANTHER, PIRSF, Pfam, SMART, TIGRFAMs, Gene3D and SUPERFAMILY: are providers of hidden Markov models (HMMs). Your contributions are welcome. You are encouraged to use the ''''Add your annotation'''' button on InterPro entry pages to suggest updated or improved annotation for individual InterPro entries.
Proper citation: InterPro (RRID:SCR_006695) Copy
http://ccb.jhu.edu/software/FLASH/
Open source software tool to merge paired-end reads from next-generation sequencing experiments. Designed to merge pairs of reads when original DNA fragments are shorter than twice length of reads. Can improve genome assemblies and transcriptome assembly by merging RNA-seq data.
Proper citation: FLASH (RRID:SCR_005531) Copy
http://publications.nigms.nih.gov/multimedia/searchresults.asp?search=All
As part of its multimedia outreach, the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health -- the United States'' medical research agency -- offers audio and video podcasts and other multimedia resources that explore the exciting world of basic biomedical research.
Proper citation: NIGMS Multimedia (RRID:SCR_005712) Copy
Collect, share, and distribute information about protein three-dimensional structures. It serves as a portal for the scientific community to learn about protein structures solved by SG centers, and also to contribute their expertise in annotating protein function. The premise of the TOPSAN project is that, no matter how much any individual knows about a particular protein, there are other members of the scientific community who know more about certain aspects of the same protein, and that the collective analyses from experts will be far more informative than any local group, let alone individual, could contribute. They believe that, if the members of the biological community are given the opportunity, authorship incentives, and an easy way to contribute their knowledge to the structure annotation, they would do so. Therefore, borrowing elements from successful, distributed, collaborative projects, such as Wikipedia (the free encyclopedia anyone can edit) and from other open source software development projects, TOPSAN will be a broad, collaborative effort to annotate protein structures, initially, those determined at the JCSG. They believe that the annotation of proteins solved by structural genomics consortia offers a unique opportunity to challenge the extant paradigm of how biological data is collected and distributed, and to connect structural genomics and structural biology to the entire biological research community. TOPSAN is designed to be scalable, modular and extensible. Furthermore, it is intended to be immediately useful in a simplistic way and will accommodate incremental improvements to functionality as usage becomes more sophisticated. Their annotation pages will offer the end user a combination of automatically generated as well as expert-curated annotations of protein structures. They will use available technology to increase the speed and granularity of the exchange of scientific ideas, and use incentive mechanisms that will encourage collaborative participation.
Proper citation: TOPSAN (RRID:SCR_005758) Copy
http://publications.nigms.nih.gov/chemhealth/
Visit ChemHealthWeb for research highlights, chemist profiles, games and videos and other Web extras. The NIGMS Chemistry of Health booklet describes basic chemistry and biochemistry research that spurs a better understanding of human health.
Proper citation: ChemHealthWeb (RRID:SCR_005851) Copy
Web-based suite of phylogenetic analysis tools for use in evolutionary biology. Web application for comparative analysis of sequence alignments using statistical models. Used for analyzing evolutionary signatures in sequence data. Datamonkey 2.0 provides curated collection of methods for interrogating coding-sequence alignments for imprints of natural selection, packaged as a responsive (i.e. can be viewed on tablet and mobile devices), fully interactive, and API-enabled web application.
Proper citation: Datamonkey (RRID:SCR_010278) Copy
Web tool to predict biological targets of miRNAs by searching for presence of conserved 8mer, 7mer and 6mer sites that match seed region of each miRNA. Nonconserved sites are also predicted and sites with mismatches in seed region that are compensated by conserved 3' pairing. Used to search for predicted microRNA targets in mammals.
Proper citation: TargetScan (RRID:SCR_010845) Copy
Service to discover disease genes in GWAS using eQTL signature matching by simply submitting your list of GWAS associations (SNPs and p-values). It is important to upload all SNPs in your association study, not just the top hits. Sherlock may be able to group multiple lower-confidence SNPs to discover functionally-important genes.
Proper citation: Sherlock (RRID:SCR_001628) Copy
A public curated compilation of allele frequency data on anthropologically defined human population samples linked to the molecular genetics-human genome databases. Only data on well defined population samples that are large enough to yield reasonably accurate frequencies and for polymorphisms sufficiently defined to be replicable can be included in ALFRED. Researchers wishing to have their data entered into ALFRED should contact them. Initially, ALFRED contained primarily data generated in the laboratories of K.K. and J.R. Kidd in the Department of Genetics at Yale, including extensive unpublished data. Data from the published literature are being entered into ALFRED in a systematic way, with a focus on polymorphisms studied in many different populations. ALFRED is distinct from such databases as dbSNP, which catalogs sequence variation. ALFRED's focus is on allele frequencies in diverse anthropologically defined populations. It is not a compendium of human DNA polymorphisms but of frequencies of selected polymorphisms with an emphasis on those that have been studied in multiple populations. All of the data in ALFRED are considered to be in the public domain and available for use in research and teaching. ALFRED provides easy searching options including versatile "Keyword search" and also has numerous summary tables providing quick overviews of contents by chromosome, population, average heterozygosity, Fst and others, all available under various tabs from the ALFRED homepage.
Proper citation: ALFRED (RRID:SCR_001730) Copy
https://www.genome.wisc.edu/tools/asap.htm
Database and web interface developed to store, update and distribute genome sequence data and gene expression data. ASAP was designed to facilitate ongoing community annotation of genomes and to grow with genome projects as they move from the preliminary data stage through post-sequencing functional analysis. The ASAP database includes multiple genome sequences at various stages of analysis, and gene expression data from preliminary experiments. Use of some of this preliminary data is conditional, and it is the users responsibility to read the data release policy and to verify that any use of specific data obtained through ASAP is consistent with this policy. There are four main routes to viewing the information in ASAP: # a summary page, # a form to query the genome annotations, # a form to query strain collections, and # a form to query the experimental data. Navigational buttons appear on every page allowing users to jump to any of these four points., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: ASAP (RRID:SCR_001849) Copy
A freely accessible on-line systems biology resource devoted to all aspects of protein modification, as well as other post-translational modifications. It provides valuable and unique tools for both cell biologists and mass spectroscopists. PhosphoSite is a human- and mouse-centric database. It includes features such as: viewing the locations of modified residues on molecular models; browsing and searching MS2 records by disease, tissue, and cell line; submitting lists of peptides to identify previously reported genes; searching by sub-cellular localization, treatment, tissues, cell types, cell lines and diseases, and protein types and protein domains; searching for experimentally-verified kinase substrates and viewing preferred substrate motifs; and viewing MS2 spectra for peptides and sites not previously published.
Proper citation: PhosphoSitePlus: Protein Modification Site (RRID:SCR_001837) Copy
https://github.com/hms-dbmi/spp
R analysis and processing package for Illumina platform Chip-Seq data.
Proper citation: SPP (RRID:SCR_001790) Copy
Web server for flexible protein structure comparison. Structure alignment is formulated as the aligned fragment pairs chaining process allowing at most t twists, and the flexible structure alignment is transformed into a rigid structure alignment when t is forced to be 0., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: FATCAT (RRID:SCR_014631) Copy
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
Ultrafast and memory efficient tool for aligning sequencing reads to long reference sequences. Supports gapped, local, and paired end alignment modes. More suited to finding longer, gapped alignments in comparison with original Bowtie method.
Proper citation: Bowtie 2 (RRID:SCR_016368) Copy
Image analysis software that learns modular models of things such as cell shape, nuclear shape, vesicular organelle distribution and microtubule distribution directly from 2D or 3D images and can produce specific instances of cell geometries without the need to create them by hand or to segment microscope images. These geometries can be combined with biochemical models to perform spatially realistic cell simulations if used in conjunction with MCell.
Proper citation: CellOrganizer (RRID:SCR_014828) Copy
http://www.ascidiancenter.ucsb.edu/index.html
Supplier of Ciona (C. robusta and C. savignyi) adults and stable transgenic animals expressing tissue-specific fluorescent proteins for research laboratories. This ascidian culturing facility is located at the marine laboratory of the University of California at Santa Barbara (UCSB).
Proper citation: Ascidian Stock Center (ASC) (RRID:SCR_014949) Copy
Supplier and researcher of wild C. elegans strains. CeNDR supplies organisms, analyzes whole-genome sequences, and facilitates genetic mappings to aid researchers in gene discovery.
Proper citation: Caenorhabditis elegans Natural Diversity Resource (CeNDR) (RRID:SCR_014958) Copy
http://pathwaynet.princeton.edu/
Web user interface for interaction predictions of human gene networks and integrative analysis of user data types that takes advantage of data from diverse tissue and cell-lineage origins. Predicts presence of functional association and interaction type among human genes or its protein products on whole genome scale. Used to analyze experimetnal gene in context of interaction networks.
Proper citation: PathwayNet (RRID:SCR_017353) Copy
Software package for advanced Bayesian evolutionary analysis by sampling trees. Used for phylogenetics, population genetics and phylodynamics. Program for Bayesian phylogenetic analysis of molecular sequences. Estimates rooted, time measured phylogenies using strict or relaxed molecular clock models. Framework can be extended by third parties. Comprised of standalone programs including BEAUti, BEAST, MASTER, RBS, SNAPP, MultiTypeTree, BDSKY, LogAnalyser, LogCombiner, TreeAnnotator, DensiTree and package manager.
Proper citation: BEAST2 (RRID:SCR_017307) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.