Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://wiki.na-mic.org/Wiki/index.php/2010_Winter_Project_Week_Spine_Segmentation_Module_in_Slicer3
3D Slicer module for automated segmentation of the spine. This is an implementation of a novel model-based segmentation algorithm. This work was presented at the NA-MIC Week in Salt Lake City, Jan 2010.
Proper citation: SpineSegmentation module for 3DSlicer (RRID:SCR_002593) Copy
Software library for time-series analysis of data from neuroscience experiments. It contains a core of numerical algorithms for time-series analysis both in the time and spectral domains, a set of container objects to represent time-series, and auxiliary objects that expose a high level interface to the numerical machinery and make common analysis tasks easy to express with compact and semantically clear code.
Proper citation: Nitime (RRID:SCR_002504) Copy
http://www.mbfbioscience.com/neurolucida
Neurolucida is advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping, and morphometry. Since its debut more than 20 years ago, Neurolucida has continued to evolve and has become the worldwide gold-standard for neuron reconstruction and 3D mapping. Neurolucida has the flexibility to handle data in many formats: using live images from digital or video cameras; stored image sets from confocal microscopes, electron microscopes, and scanning tomographic sources, or through the microscope oculars using the patented LucividTM. Neurolucida controls a motorized XYZ stage for integrated navigation through tissue sections, allowing for sophisticated analysis from many fields-of-view. Neurolucidas Serial Section Manager integrates unlimited sections into a single data file, maintaining each section in aligned 3D space for full quantitative analysis. Neurolucidas neuron tracing capabilities include 3D measurement and reconstruction of branching processes. Neurolucida also features sophisticated tools for mapping delineate and map anatomical regions for detailed morphometric analyses. Neurolucida uses advanced computer-controlled microscopy techniques to obtain accurate results and speed your work. Plug-in modules are available for confocal and MRI analysis, 3D solid modeling, and virtual slide creation. The user-friendly interface gives you rapid results, allowing you to acquire data and capture the full 3D extent of neurons and brain regions. You can reconstruct neurons or create 3D serial reconstructions directly from slides or acquired images, and Neurolucida offers full microscope control for brightfield, fluorescent, and confocal microscopes. Its added compatibility with 64-bit Microsoft Vista enables reconstructions with even larger images, image stacks, and virtual slides. Adding the Solid Modeling Module allows you to rotate and view your reconstructions in real time. Neurolucida is available in two separate versions Standard and Workstation. The Standard version enables control of microscope hardware, whereas the Workstation version is used for offline analysis away from the microscope. Neurolucida provides quantitative analysis with results presented in graphical or spreadsheet format exportable to Microsoft Excel. Overall, features include: - Tracing Neurons - Anatomical Mapping - Image Processing and Analysis Features - Editing - Morphometric Analysis - Hardware Integration - Cell Analysis - Visualization Features Sponsors: Neurolucida is supported by MBF Bioscience.
Proper citation: Neurolucida (RRID:SCR_001775) Copy
http://humanconnectome.org/connectome/connectomeDB.html
Data management platform that houses all data generated by the Human Connectome Project - image data, clinical evaluations, behavioral data and more. ConnectomeDB stores raw image data, as well as results of analysis and processing pipelines. Using the ConnectomeDB infrastructure, research centers will be also able to manage Connectome-like projects, including data upload and entry, quality control, processing pipelines, and data distribution. ConnectomeDB is designed to be a data-mining tool, that allows users to generate and test hypotheses based on groups of subjects. Using the ConnectomeDB interface, users can easily search, browse and filter large amounts of subject data, and download necessary files for many kinds of analysis. ConnectomeDB is designed to work seamlessly with Connectome Workbench, an interactive, multidimensional visualization platform designed specifically for handling connectivity data. De-identified data within ConnectomeDB is publicly accessible. Access to additional data may be available to qualified research investigators. ConnectomeDB is being hosted on a BlueArc storage platform housed at Washington University through the year 2020. This data platform is based on XNAT, an open-source image informatics software toolkit developed by the NRG at Washington University. ConnectomeDB itself is fully open source.
Proper citation: ConnectomeDB (RRID:SCR_004830) Copy
https://neuroscienceblueprint.nih.gov/Resources-Tools/Blueprint-Resources-Tools-Library
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 22, 2023. National initiative to advance biomedical research through data sharing and online collaboration that provides data sharing infrastructure, software tools, strategies and advisory services. Groups may choose whether to share data internally or with external audiences. Hardware and data remain under control of individual user groups.
Proper citation: Biomedical Informatics Research Network (RRID:SCR_005163) Copy
Issue
Software package for analysis of brain imaging data sequences. Sequences can be a series of images from different cohorts, or time-series from same subject. Current release is designed for analysis of fMRI, PET, SPECT, EEG and MEG.
Proper citation: SPM (RRID:SCR_007037) Copy
http://www.pstnet.com/software.cfm?ID=96
Designed for use in an MRI simulator, MoTrak software uses Ascension Technology?s Flock of Birds. The sensor attaches to the subject?s head and determines the position of the head in space relative to the transmitter. The sensor records angular rotations as well as positional displacements from an initially calibrated position. This information is displayed and logged by the program in real-time, allowing observation of head motion in an MRI simulator. In the simulator, the participant can simultaneously be habituated to the MRI environment, while being trained to remain still via feedback from the MoTrak system.
Proper citation: MoTrak Head Motion Tracking System (RRID:SCR_009607) Copy
http://www.nitrc.org/projects/bnv/
Aa brain network visualization tool, which can help researchers to visualize structural and functional connectivity patterns from different levels in a quick, easy, and flexible way.
Proper citation: BrainNet Viewer (RRID:SCR_009446) Copy
A tool for automatic segmentation of 3D biological datasets, with emphasis on 3D electron microscopy. It works best for 3D blob shaped objects like mitochondria, lysosomes, etc. The project is written in Python and uses the pythonxy platform (which includes scipy and ITK image processing tools).
Proper citation: Cytoseg (RRID:SCR_009553) Copy
http://www.math.mcgill.ca/keith/surfstat
A Matlab toolbox for the statistical analysis of univariate and multivariate surface data using linear mixed effects models and random field theory.
Proper citation: SurfStat (RRID:SCR_007081) Copy
http://www.nitrc.org/projects/nihlungseg/
A segmentation tool for the segmentation of a lung from CT images. The sofware can be run in two modes: fully automatic and semi-automatic with manual seeding by the user. The software also allows the user to perform basic filtering operations and manual correction to the segmentation. The VTK-based rendering implementation, along with option to view in axial, coronal, and sagittal, provides the user with better visualization of the segmented lung.
Proper citation: NIH-CIDI Lung Segmentation Tool (RRID:SCR_014150) Copy
http://www.nitrc.org/projects/nutil/
Software toolbox to simplify and streamline mechanism of pre and post processing 2D brain image data. Neuroscience image processing and analysis utilities. Stand alone application that runs on all operating systems.
Proper citation: Nutil - Neuroimaging utilities (RRID:SCR_017183) Copy
http://www.nitrc.org/projects/dfbidb/
A suite of tools for efficient management of neuroimaging project data. Specifically, DFBIdb was designed to allow users to quickly perform routine management tasks of sorting, archiving, exploring, exporting and organising raw data. DFBIdb was implemented as a collection of Python scripts that maintain a project-based, centralised database that is based on the XCEDE 2 data model. Project data is imported from a filesystem hierarchy of raw files, which is an often-used convention of imaging devices, using a single script that catalogues meta-data into a modified XCEDE 2 data model. During the import process data are reversibly anonymised, archived and compressed. The import script was designed to support multiple file formats and features an extensible framework that can be adapted to novel file formats. Graphical user interfaces are provided for data exploration. DFBIdb includes facilities to export, convert and organise customisable subsets of project data according to user-specified criteria.
Proper citation: DFBIdb (RRID:SCR_009456) Copy
http://nrg.wustl.edu/projects/fiv
A tool for visualizing functional and anatomic MRI data.
Proper citation: FIV (RRID:SCR_009575) Copy
http://www.nitrc.org/projects/ccseg/
An open-source C++-based application that allows automatic as well as user-interactive segmentation of the Corpus Callosum. Via a Qt-based graphical user interface, CCSeg also performs semi-automatic segmentation.
Proper citation: CCSeg - Corpus Callosum Segmentation (RRID:SCR_009453) Copy
http://www.ncigt.org/pages/Research_Projects/ImagingCoreToolbox/Imaging_Toolkit
This software provides algorithms for the reconstruction of raw MR data. In particular, it supports the reconstruction of accelerated data acquisitions where k-space is subsampled and the Fourier domain encoding is complemented by temporal encoding, spatial encoding, or and/or a constrained reconstruction. This library of functions provides a number of reconstruction algorithms that accurately employ advanced MR imaging methods including: UNFOLD; parallel imaging methods such as SENSE and GRAPPA; Homodyne processing of partial-Fourier data, and gradient field inhomogeneity correction (gradwarp); EPI Nyquist Ghost correction and ramp-sampling gridding. The target audience is research groups who may be interested in exploring or employing advanced MR reconstruction techniques, but don't have the necessary expertise in-house. Inquires may be directed to: ncigt-imaging-toolkit -at- bwh.harvard.edu
Proper citation: NCIGT Fast Imaging Library (RRID:SCR_009609) Copy
A complete set of tools that enables researchers to perform spatial and navigational behavior experiments within interactive, easy to create, and extendable (e.g., multiple rooms) 3D virtual environments. MazeSuite can be used to design/edit adapted 3D environments where subjects? behavioral performance can be tracked. Maze Suite consists of three main applications; an editing program to create and alter maps (MazeMaker), a visualization/rendering module (MazeWalker), and finally an analysis/mapping tool (MazeAnalyzer). Additionally, MazeSuite has the capabilities of sending signal pulses to physiological recording devices using standard computer ports. MazeSuite, with all 3 applications, is a unique and complete toolset for researchers who want to easily and rapidly deploy interactive 3D environments. Requirements Maze Suite is designed for Windows 7, Windows Vista and Windows XP. 3D rendering quality depends on available graphics card hardware; OpenGL 2.1 or above compliant is recommended. For Windows XP systems, .NET Framework Version 2.0 or above is required and can be downloaded from Microsoft's website.
Proper citation: MazeSuite (RRID:SCR_009606) Copy
A viewer for medical research images that provides analysis tools and a user interface to navigate image volumes. There are three versions of Mango, each geared for a different platform: * Mango ? Desktop ? Mac OS X, Windows, and Linux * webMango ? Browser ? Safari, Firefox, Chrome, and Internet Explorer * iMango ? Mobile ? Apple iPad Key Features: * Built-in support for DICOM, NIFTI, Analyze, and NEMA-DES formats * Customizable: Create plugins, custom filters, color tables, file formats, and atlases * ROI Editing: Threshold and component-based tools for painting and tracing ROIs * Surface Rendering: Interactive surface models supporting cut planes and overlays * Image Registration: Semi-automatic image coregistration and manual transform editing * Image Stacking: Threshold and transparency-based image overlay stacking * Analysis: Histogram, cross-section, time-series analysis, image and ROI statistics * Processing: Kernel and rank filtering, arithmetic/logic image and ROI calculators
Proper citation: Mango (RRID:SCR_009603) Copy
http://visual.cs.utsa.edu/eegvis
A MATLAB toolbox for exploration of multi-channel EEG and other large array-based data sets using multi-scale drill-down techniques. The toolbox can be used directly in MATLAB at any stage in a user's processing pipeline, as a plug in for EEGLAB, or as a standalone precompiled application without MATLAB running. EEGVIS and its supporting packages are freely available under the GNU general public license. The toolbox also supplies a number of extensible base classes for users who wish to develop their own visualizations.
Proper citation: EEGVIS (RRID:SCR_009569) Copy
https://github.com/clementsan/DTI-Reg
An open-source C++ application that performs pair-wise DTI registration, using scalar FA map to drive the registration. Individual steps of the pair-wise registration pipeline are performed via external applications - some of them being 3D Slicer modules. Starting with two input DTI images, scalar FA maps are generated via dtiprocess. Registration is then performed between these FA maps, via BRAINSFit/BRAINSDemonWarp or ANTS -Advanced Normalization Tools-, which provide different registration schemes: rigid, affine, BSpline, diffeomorphic, logDemons. The final deformation is then applied to the source DTI image via ResampleDTI.
Proper citation: DTI-Reg (RRID:SCR_009560) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.