Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://fcon_1000.projects.nitrc.org/indi/pro/nyu.html
Datasets including a collection of scans from 49 psychiatrically evaluated neurotypical adults, ranging in age from 6 to 55 years old, with age, gender and intelligence quotient (IQ) information provided. Future releases will include more comprehensive phenotypic information, and child and adolescent datasets, as well as individuals from clinical populations. The following data are released for every participant: * At least one 6-minute resting state fMRI scan (R-fMRI) * * One high-resolution T1-weighted mprage, defaced to protect patient confidentiality * Two 64-direction diffusion tensor imaging scans * Demographic information (age, gender) and IQ-measures (Verbal, Performance, and Composite; Weschler Abbreviated Scale of Intelligence - WASI) * Most participants have 2 R-fMRI scans, collected less than 1 hour apart in the same scanning session. Rest_1 is always collected first.
Proper citation: NYU Institute for Pediatric Neuroscience Sample (RRID:SCR_010458) Copy
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
Data set of raw anatomical and functional MR data from 72 patients with Schizophrenia and 75 healthy controls (ages ranging from 18 to 65 in each group). All subjects were screened and excluded if they had: history of neurological disorder, history of mental retardation, history of severe head trauma with more than 5 minutes loss of consciousness, history of substance abuse or dependence within the last 12 months. Diagnostic information was collected using the Structured Clinical Interview used for DSM Disorders (SCID). A multi-echo MPRAGE (MEMPR) sequence was used with the following parameters: TR/TE/TI = 2530/(1.64, 3.5, 5.36, 7.22, 9.08)/900 ms, flip angle = 7��, FOV = 256x256 mm, Slab thickness = 176 mm, Matrix = 256x256x176, Voxel size =1x1x1 mm, Number of echos = 5, Pixel bandwidth =650 Hz, Total scan time = 6 min. With 5 echoes, the TR, TI and time to encode partitions for the MEMPR are similar to that of a conventional MPRAGE, resulting in similar GM/WM/CSF contrast. Rest data was collected with single-shot full k-space echo-planar imaging (EPI) with ramp sampling correction using the intercomissural line (AC-PC) as a reference (TR: 2 s, TE: 29 ms, matrix size: 64x64, 32 slices, voxel size: 3x3x4 mm3). Slice Acquisition Order: Rest scan - collected in the Axial plane - series ascending - multi slice mode - interleaved MPRAGE - collected in the Sag plane - series interleaved - multi slice mode - single shot The following data are released for every participant: * Resting fMRI * Anatomical MRI * Phenotypic data for every participant including: gender, age, handedness and diagnostic information.
Proper citation: COBRE (RRID:SCR_010482) Copy
http://www.lji.org/faculty-research/scientific-cores/clinical-studies/#overview
Core facility for clinical studies carried out by the La Jolla Institute of Allergy and Immunology. It is also a non-profit research organization that focuses on studying topics lthat include pollen allergies, HIV, food allergies and tuberculosis.
Proper citation: La Jolla Institute for Immunology Clinical Studies Core Facility (RRID:SCR_014833) Copy
http://www.massgeneral.org/csibd/cores/clinical.aspx
Core whose objective is to provide an infrastructure that facilitates the translation of basic research findings into the clinic. Its services include consultation, training, and education, biospecimen services, and facilitating data collection and analysis.
Proper citation: Center for the Study of Inflammatory Bowel Disease Clinical Core (RRID:SCR_015227) Copy
https://case.edu/medicine/cddrcc/cores/
Collection of four cores: the biorepository core, for clinical specimen storage; the Histology/Imaging Core, for tissue preparation and sectioning; the Mouse Models Core, for education and training on various mouse modeling techniques; and the Clinical Component of the Administrative Core, for clinical study design consultation.
Proper citation: Cleveland Digestive Diseases Research Core Facilities (RRID:SCR_015216) Copy
Core whose aim is to translate basic science research into effective diagnostic and therapeutic strategies that will improve the lives of patients by interrupting the pathogenesis of chronic kidney disease and its attendant high risk of cardiovascular disability and death. It combines comprehensive human genetics with phenotyping of subjects.
Proper citation: George M. O'Brien Kidney Research Core Center - UT Southwestern Medical Center Clinical and Translational Core (RRID:SCR_015295) Copy
http://cunorc.org/cores/clinical-core/
Core facility for the University of Colorado Anschutz Medical Campus Nutrition and Obesity Research Center. Core provides NORC members assistance with clinical research studies involving modification of body weight.
Proper citation: University of Colorado Anschutz Medical Campus Nutrition and Obesity Research Center Clinical Intervention and Translation Core Facility (RRID:SCR_015912) Copy
https://sdrc.stanford.edu/sdrc-research-cores/dctc/home/
With the following services from the Diabetes Clinical and Translational Core (DCTC), members will receive training in biospecimen preservation, study design, data analysis, data management, use of statistical software and clinical trial conduct.
Proper citation: Stanford Diabetes Research Center Diabetes Clinical and Translational Core (RRID:SCR_016212) Copy
https://sdrc.stanford.edu/sdrc-research-cores/dimc/home/
Core facility that provides immune monitoring assays at the RNA, protein, and cellular level, as well as archiving, reporting, and data mining support for clinical and translational studies related to Diabetes. The DIMC is a specialized subcore of the Human Immune Monitoring Center (HIMC) at Stanford.
Proper citation: Stanford Diabetes Research Center Diabetes Immune Monitoring Core (RRID:SCR_016210) Copy
http://www.nsabp.pitt.edu/NSABP_Pathology.asp
The NSABP (National Surgical Adjuvant Breast and Bowel Project) Tissue Bank is the central repository of tissue samples (stained and unstained slides, tissue blocks, and frozen tissue specimens) collected from clinical trials conducted by the NSABP. The main scientific aim of the NSABP Division of Pathology is to develop clinical context-specific prognostic markers and predictive markers that predict response to or benefit from specific therapeutic modality. To achieve this aim, the laboratory collects the tumor and adjacent normal tissues from cancer patients enrolled into the NSABP trials through its membership institutions, and maintain these valuable materials with clinical follow-up information and distribute them to qualified approved investigators. Currently, specimens from more than 90,000 cases of breast and colon cancer are stored and maintained at the bank. Paraffin embedded tumor specimens are available from NSABP trials. We currently do not bank frozen tissues. All blocks are from patients enrolled in prospective NSABP treatment protocols and complete clinical follow up information as well as demographic information is available. Depending on the project, unstained tissue sections of 4-micrometer thickness, tissue microarrays, or stained slides are provided to the investigators in a blinded study format. Any investigators with novel projects that conform to the research goals of NSABP may apply for the tissue. Please refer to the NSABP Tissue Bank Policy to determine if your project conforms to these goals. Priority is given to NSABP membership institutions who regularly submit tissue blocks.
Proper citation: National Surgical Adjuvant Breast and Bowel Project Tissue Bank (RRID:SCR_004506) Copy
Sciblogs brings together the best science bloggers in the country (New Zealand) on one website, creating a hub for scientific analysis and discussion and facilitating reader interaction. The website is for scientists who want to reach out to a general audience to explain their science and how it relates to society. Some Sciblog contributors spend most of their time in the lab or buried in research. Others are authors or entrepreneurs. All of them know what they are talking about and have an interest in engaging in discussion on the big science-related issues facing society. Over time more bloggers will be added to the Sciblogs roster. If you would like to inquire about hosting a blog on Sciblogs contact us. You can easily keep an eye on new Sciblogs posts by subscribing via RSS or email or by following our Twitter feed. Alternatively, there is a Facebook page as well as a Facebook group feel free to join in! Categories: * Science * Agriculture * Technology * Health and Medicine * Environment and Ecology * Science and Society
Proper citation: Sciblogs (RRID:SCR_005219) Copy
http://omniBiomarker.bme.gatech.edu
omniBiomarker is a web-application for analysis of high-throughput -omic data. Its primary function is to identify differentially expressed biomarkers that may be used for diagnostic or prognostic clinical prediction. Currently, omniBiomarker allows users to analyze their data with many different ranking methods simultaneously using a high-performance compute cluster. The next release of omniBiomarker will automatically select the most biologically relevant ranking method based on user input regarding prior knowledge. The omniBiomarker workflow * Data: Gene Expression * Algorithms: Knowledge-Driven Gene Ranking * Differentially expressed Genes * Clinical / Biological Validation * Knowledge: NCI Thesaurus of Cancer, Cancer Gene Index * back to Algorithms
Proper citation: omniBiomarker (RRID:SCR_005750) Copy
http://compbio.charite.de/phenomizer/
The Phenomizer offers three different approaches to find the appropriate term for a phenotypic abnormality, indicated by the three tabs on the left hand side: Feature, Disease and Ontology. The Phenomizer is intended to be used by qualified and licensed physicians in order to provide assistance in reaching the correct diagnosis in patients with hereditary diseases and for use as a teaching aid. The Phenomizer does not make diagnoses. Rather, it produces a ranked list of possibilities that can be used by physicians as a part of the diagnostic workup. The Phenomizer does not contain information about all possible diagnoses or even all possible hereditary diseases. The Phenomizer should not be used to make medical decisions without the advice of a physician.
Proper citation: Phenomizer (RRID:SCR_006157) Copy
http://www.cnio.es/ES/grupos/plantillas/presentacion.asp?grupo=50004308
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 29, 2016. The need to use human neoplastic tissue under ideal conditions is currently of particular importance due to the development molecular pathology techniques that allow large-scale studies of genetic expression that are also of clinical significance. The Tumour Bank Network (TBN), instigated and coordinated by the Molecular Pathology Programme (MMP) aims to respond to this need by the promoting of Tumour Banks in Spanish hospitals. This will be achieved through the application of homogeneous procedures for the collection, processing and storage of neoplastic and normal tissue samples in such a way as to make molecular studies possible, avoiding that avoid the intrinsic bias of multi-centre studies possible. These Hospital Tumour Banks are based within the Pathology Departments of the collaborating Hospitals, that are interconnected through a computer-based network. In this way, each Centre''s tissue remains in the Hospital itself, thereby playing a key role in the development of the welfare, teaching and research activities within the Hospital. At the same time, it represents a tool to encourage of multi-hospital cancer research and of cooperation between basic and clinical researchers, constituting important collaboration between biomedical disciplines. The design does not correspond to a Central Tumour Bank, but that of a cooperative and coordinated Network of Hospital Banks, based on simple, homogeneous and optimal tissue treatment protocols. This Network is promoted by the Centro Nacional de Investigaciones Oncologicas (CNIO), which thereby undertakes the work of coordinating the network, using and maintaining the database, adhering to quality control. The aim of the CNIO's TBN is to acquire neoplastic and control non-neoplastic material of all types of malignant neoplasias, in the form of tissue fixed in formalin and paraffin embedded, of samples that are unfixed or frozen according to conventional methods as set out in Annexe 1 and even, exceptionally as fresh tissue. When other types of samples are required to carry out a specific project, the central office of the TBN will draw up a protocol with the group leading the project for the collection and maintenance of the tissue and clinicopathological data required for the proposed research. These protocols will be disseminated among the Associated Hospitals in order to gather the previously agreed number cases. Basic data surrounding the processing and preservation conditions for each case will be sent to the central office of the Bank, which under no circumstances will reveal the identity of the patient. Any Spanish cancer research team will be able to request tissue from the Tissue Bank Network. Absolute priority will be afforded to projects whose principal researcher belongs to one of the Associated Centres of the TNB, to other institutions with special agreements concerning the exchange of samples, and to the CNIO's researchers.
Proper citation: Spanish National Tumour Bank Network (RRID:SCR_008707) Copy
http://cpl.med.miami.edu/services/
Full service veterinary reference laboratory directed by members of faculty of University of Miami Miller School of Medicine. Offers clinical pathology and histopathology services to meet needs of avian, exotic, lab animal, and wildlife veterinarians. Services include Acute Phase Protein Laboratory. Provides recent diagnostic testing developments which may not yet be available in other veterinary diagnostic testing environments.
Proper citation: Miami University Veterinary Clinical Pathology Laboratory Core Facility (RRID:SCR_017822) Copy
http://case.edu/medicine/ccir/imaging-research-core/
Core provides preclinical and clinical imaging instrumentation and techniques.Preclinical services include Bioluminescence,Fluorescence,In situ cryoimaging,Magnetic Resonance Imaging (MRI),Positron Emission Tomography (PET),Radiochemistry Synthesis, Scintigraphy,Ultrasound,X-ray / Computed Tomography (CT) / micro CT,Image Processing / Quantification clinical research imaging systems. Clinical services include Comprehensive MR imaging research services, Dedicated Siemens Skyra 3T MRI scanner, Large animal preclinical studies, or clinical human research may be conducted,Structural and functional brain scanning can be performed with Avotec LCD Projection System, Coodination of access to PET and CT scanners for additional preclinical and human imaging studies. Core includes PET radiopharmaceutical core facility. Core staff provide radiochemistry synthesis.
Proper citation: Case Western Reserve University Imaging Research Core Facility (RRID:SCR_017917) Copy
http://www.cti.northwestern.edu/
Core is Northwestern Radiology research facility providing translational imaging capabilities that promote pre-clinical and clinical research efforts. CTI occupies space in basement of Olson building housing imaging equipment along with research staff. Services include Cardiovascular Imaging for development, analysis and application of MRI methods providing insights into structure and function of cardiovascular system,NeuroImaging for functional MRI using spectroscopy and diffusion-weighted imaging to studying human anatomy and physiology during development and disease,Small Animal Imaging for molecular and functional imaging of biological processes in living animal models to study diseases and responses to intervention.
Proper citation: Northwestern University Center for Translational Imaging Core Facility (RRID:SCR_017878) Copy
https://www.preventivemedicine.northwestern.edu/divisions/biostatistics/
Core where division members engage in statistical methods development and application, research design and statistical computing for health science research. Faculty interests encompass Bayesian methods, bioinformatics, causal inference, computational biology, clinical trials, diagnostic testing, longitudinal modeling, missing data modeling, observational data methods, semi-parametric models, spatial modeling, statistical genetics and survival analysis.
Proper citation: Northwestern University Biostatistics Collaborative Center (RRID:SCR_017943) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on 7/28/13. Core facility of Columbia Neuroscience with the goal of establishing a collaborative and multi-investigator neuroimaging environment that is focused on the investigation of the neurocircuitry of the brain that underlies cognition, perception and action, and also the development of clinical applications that enhance the goals of personalized medicine. Within this environment the specific current research interests of the Hirsch group include several related directions of investigation. The first is conscious and subconscious neural processes that mediate emotion and cognition in healthy individuals and in patients with psychiatric disorders. This direction also includes neurocircuitry that is characteristic of disorders of consciousness such as minimally conscious or vegetative states, self and visual awareness, and attention. Neurocircuitry of other complex cognitive processes such as decisions, inductive and deductive reasoning, language, truthfulness and top-down influences of expectation, reward, and regulation on early visual and mid-level perceptual and emotional systems. On-going projects targeted for clinical applications include benefits for neurosurgery such as the development of task batteries to map the cortical locations of essential functions such as language, motor, sensation, memory, emotion and sensory functions including visions, audition and the chemical senses. Computational innovations for labeling correspondence between brain structure and specific functional regions are under development to achieve the highest interpretive precision. Current projects include integration of EEG and fMRI techniques to localize seizuregenic cortex in relation to eloquent and functioning cortex for neurosurgical planning; integration of TMS and fMRI to discriminate essential and associative language-sensitive cortical areas; and integration of VEP, EEG and fMRI to inform assessments of visual disease secondary to stroke or neural degeneration. Projects intended to refine and enhance diagnosis of psychiatric disorders such as anxiety, depression, and eating disorders include development of specialized paradigms to target dysfunctional neurocircuitry such as emotional systems (amygdala and basal ganglia) and control and regulatory systems (cingulate and pre-frontal cortex). Comparison of before-treatment images with after-treatment images to inform models of both treatment and disease and investigation of the hypothesis that individual genetic and functional differences have predictive value for treatment options and outcome are currently underway. The lab has pioneered techniques for functional mapping of single patients, and operates an active clinical service for mapping individuals for neurosurgical planning, assessments of the neurocircuitry that underlie acquired or inherited disabilities and the mechanisms of neuroplasticity that restore lost functions are actively investigated using both groups and single subject studies. :
Proper citation: fMRI Research Center at Columbia (RRID:SCR_002658) Copy
Biomedical technology research center that focuses on development of unique magnetic resonance (MR) imaging and spectroscopy methodologies and instrumentation for the acquisition of structural, functional, and biochemical information non-invasively in humans, and utilizing this capability to investigate organ function in health and disease. The distinctive feature of this resource is the emphasis on ultrahigh magnetic fields (7 Tesla and above), which was pioneered by this BTRC. This emphasis is based on the premise that there exists significant advantages to extracting biomedical information using ultrahigh magnetic fields, provided difficulties encountered by working at high frequencies corresponding to such high field strengths can be overcome by methodological and engineering solutions. This BTRC is home to some of the most advanced MR instrumentation in the world, complemented by human resources that provide unique expertise in imaging physics, engineering, and signal processing. No single group of scientists can successfully carry out all aspects of this type of interdisciplinary biomedical research; by bringing together these multi-disciplinary capabilities in a synergistic fashion, facilitating these interdisciplinary interactions, and providing adequate and centralized support for them under a central umbrella, this BTRC amplifies the contributions of each of these groups of scientists to basic and clinical biomedical research. Collectively, the approaches and instrumentation developed in this BTRC constitute some of the most important tools used today to study system level organ function and physiology in humans for basic and translational research, and are increasingly applied world-wide. CMRR Faculty conducts research in a variety of areas including: * High field functional brain mapping in humans; methodological developments, mechanistic studies, and neuroscience applications * Metabolism, bioenergetics, and perfusion studies of human pathological states (tumors, obesity, diabetes, hepatic encephalopathy, cystic fibrosis, and psychiatric disorders) * Cardiac bioenergetics under normal and pathological conditions * Automated magnetic field shimming methods that are critical for spectroscopy and ultrafast imaging at high magnetic fields * Development of high field magnetic resonance imaging and spectroscopy techniques for anatomic, physiologic, metabolic, and functional studies in humans and animal models * Radiofrequency (RF) pulse design based on adiabatic principles * Development of magnetic resonance hardware for high fields (e.g. RF coils, pre-amplifiers, digital receivers, phased arrays, etc.) * Development of software for data analysis and display for functional brain mapping.
Proper citation: Center for Magnetic Resonance Research (RRID:SCR_003148) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.