Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Central data repository for nematode biology including complete genomic sequence, gene predictions and orthology assignments from range of related nematodes.Data concerning genetics, genomics and biology of C. elegans and related nematodes. Derived from initial ACeDB database of C. elegans genetic and sequence information, WormBase includes genomic, anatomical and functional information of C. elegans, other Caenorhabditis species and other nematodes. Maintains public FTP site where researchers can find many commonly requested files and datasets, WormBase software and prepackaged databases.
Proper citation: WormBase (RRID:SCR_003098) Copy
BioPerl is a community effort to produce Perl code which is useful in biology. This toolkit of perl modules is useful in building bioinformatics solutions in Perl. It is built in an object-oriented manner so that many modules depend on each other to achieve a task. The collection of modules in the bioperl-live repository consist of the core of the functionality of bioperl. Additionally auxiliary modules for creating graphical interfaces (bioperl-gui), persistent storage in RDMBS (bioperl-db), running and parsing the results from hundreds of bioinformatics applications (Run package), software to automate bioinformatic analyses (bioperl-pipeline) are all available as Git modules in our repository. The BioPerl toolkit provides a library of hundreds of routines for processing sequence, annotation, alignment, and sequence analysis reports. It often serves as a bridge between different computational biology applications assisting the user to construct analysis pipelines. This chapter illustrates how BioPerl facilitates tasks such as writing scripts summarizing information from BLAST reports or extracting key annotation details from a GenBank sequence record. BioPerl includes modules written by Sohel Merchant of the GO Consortium for parsing and manipulating OBO ontologies. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: BioPerl (RRID:SCR_002989) Copy
http://ccr.coriell.org/Sections/Collections/NHGRI/?SsId=11
DNA samples and cell lines from fifteen populations, including the samples used for the International HapMap Project, the HapMap 3 Project and the 1000 Genomes Project (except for the CEPH samples). All of the samples were contributed with consent to broad data release and to their use in many future studies, including for extensive genotyping and sequencing, gene expression and proteomics studies, and all other types of genetic variation research. NHGRI led the contribution of the NIH to the International HapMap Project, which developed a haplotype map of the human genome. This haplotype map, called the HapMap is a publicly available tool that allows researchers to find genes and genetic variations that affect health and disease. The samples from four populations used to develop the HapMap were initially housed in the Human Genetic Cell Repository of the National Institute of General Medical Sciences (NIGMS). Except for the Utah CEPH samples that were in the NIGMS Repository before the initiation of the HapMap Project and remain there, the NHGRI Repository now houses all of the HapMap samples. The NHGRI repository also houses the extended set of HapMap samples, which includes additional samples from the HapMap populations and samples from seven additional populations. All of the samples were collected with extensive community engagement, including discussions with members of the donor communities about the ethical and social implications of human genetic variation research. These samples were studied as part of the HapMap 3 Project. The NHGRI repository also houses the samples for the International 1000 Genomes Project. This Project is lightly sequencing genome-wide 2500 samples from 27 populations. This project aims to provide a detailed map of human genetic variation, including common and rare SNPs and structural variants. This map will allow more precise localization of genomic regions that contribute to health and disease. The 1000 Genomes Project includes many of the samples from the HapMap and extended set of HapMap samples, as well as samples being collected from additional populations. Currently, samples from five additional populations are available; the others will become available during 2011 and 2012. No identifying or phenotypic information is available for the samples. Donors gave broad consent for use of the samples, including for genotyping, sequencing, and cellular phenotype studies. Samples collected from other populations for the study of human genetic variation may be added to the collection in the future. The NHGRI Repository distributes high quality lymphoblastoid cell lines and DNA from the samples to researchers. DNA is provided in plates or panels of 70 to 100 samples or as individual samples. Cell cultures and DNA samples are distributed only to qualified professional persons who are associated with recognized research, medical, educational, or industrial organizations engaged in health-related research or health delivery.
Proper citation: NHGRI Sample Repository for Human Genetic Research (RRID:SCR_004528) Copy
Software tool to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. It counts cells and also measures the size, shape, intensity and texture of every cell (and every labeled subcellular compartment) in every image. It was designed for high throughput screening but can perform automated image analysis for images from time-lapse movies and low-throughput experiments. CellProfiler has an increasing number of algorithms to identify and measure properties of neuronal cell types.
Proper citation: CellProfiler Image Analysis Software (RRID:SCR_007358) Copy
Ratings or validation data are available for this resource
Human and mouse genome annotation project which aims to identify all gene features in the human genome using computational analysis, manual annotation, and experimental validation.
Proper citation: GENCODE (RRID:SCR_014966) Copy
https://github.com/fritzsedlazeck/Sniffles
Software tool as structural variation caller using third generation sequencing (PacBio or Oxford Nanopore). It detects all types of SVs (10bp+) using evidence from split-read alignments, high-mismatch regions, and coverage analysis. Used to avoid single molecule long read sequencing high error rates.
Proper citation: Sniffles (RRID:SCR_017619) Copy
https://genome.ucsc.edu/cgi-bin/hgLiftOver
Web tool to convert genome coordinates and genome annotation files between assemblies. Used to translate genomic coordinates from one assembly version into another and retrieves putative orthologous regions in other species using UCSC chained and netted alignments.
Proper citation: liftOver (RRID:SCR_018160) Copy
Web tool to perform gene set enrichment testing. Used to test for predefined biologically relevant gene sets that contain more significant genes from experimental dataset than expected by chance. Logistic regression approach for identifying enriched biological groups in gene expression data.
Proper citation: LRPath (RRID:SCR_018572) Copy
https://github.com/Gaius-Augustus/BRAKER
Software tool as pipeline for accurate and automated gene prediction in novel eukaryotic genomes. Automated gene prediction training and gene prediction pipeline.BRAKER1 is eukaryotic genome annotation pipeline. BRAKER2 is extension of BRAKER1 which allows for fully automated training of gene prediction tools GeneMark EX R14, R15, R17, F1 and AUGUSTUS from RNA Seq and/or protein homology information, and that integrates extrinsic evidence from RNA-Seq and protein homology information into prediction.
Proper citation: BRAKER (RRID:SCR_018964) Copy
Software R package for processing and analyzing single-cell ATAC-seq data. Used for integrative single cell chromatin accessibility analysis.Provides intuitive, user focused interface for complex single cell analysis, including doublet removal, single cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing.
Proper citation: ArchR (RRID:SCR_020982) Copy
https://bioconductor.org/packages/release/bioc/html/PhenStat.html
Software R package for statistical analysis of phenotypic data.Tool kit for standardized analysis of high throughput phenotypic data.
Proper citation: PhenStat (RRID:SCR_021317) Copy
Web tool to investigate genome wide association results in their local genomic context. Adds new features to LocusZoom such as Manhattan plots, annotation options, and calculations that put findings in context. Used for interactive and embeddable visualization of genetic association study results.Javascript/d3 embeddable plugin for interactively visualizing statistical genetic data from customizable sources.
Proper citation: LocusZoom.org (RRID:SCR_021374) Copy
https://ccb.jhu.edu/software/stringtie/
Software application for assembling of RNA-Seq alignments into potential transcripts. It enables improved reconstruction of a transcriptome from RNA-seq reads. This transcript assembling and quantification program is implemented in C++ .
Proper citation: StringTie (RRID:SCR_016323) Copy
https://bitbucket.org/charade/svengine
Software for analysis and simulation of gene sequences and structural variants. This software works with FASTA, FASTQ, BAM, VAR, META, and NEWICK file formats.
Proper citation: SVEngine (RRID:SCR_016235) Copy
http://www.repeatmasker.org/RepeatModeler/
Sequence analysis software that performs repeat family identification and creates models for sequence data. RepeatModeler utilizes RepeatScout and RECON to identify repeat element boundaries and family relationships., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: RepeatModeler (RRID:SCR_015027) Copy
https://github.com/BioDepot/BioDepot-workflow-builder
Software tool to create and execute reproducible bioinformatics workflows using drag and drop interface. Graphical widgets represent Docker containers executing modular task. Widgets are linked graphically to build bioinformatics workflows that can be reproducibly deployed across different local and cloud platforms. Each widget contains form-based user interface to facilitate parameter entry and console to display intermediate results.
Proper citation: BioDepot-workflow-builder (RRID:SCR_017402) Copy
http://deweylab.biostat.wisc.edu/detonate/
Software tool to evaluate de novo transcriptome assemblies from RNA-Seq data. Consists of RSEM-EVAL and REF-EVAL packages. RSEM-EVAL is reference-free evaluation method. REF-EVAL is reference based and can be used to compare sets of any kinds of genomic sequences.
Proper citation: DETONATE (RRID:SCR_017035) Copy
https://github.com/greenelab/miQC
Software tool as flexible, probablistic metrics for quality control of scRNA-seq data. Adaptive probabilistic framework for quality control of single-cell RNA-sequencing data. Data driven QC metric that jointly models proportion of reads mapping to mtDNA and number of detected genes with mixture models in probabilistic framework to predict which cells are low quality in given dataset.
Proper citation: miQC (RRID:SCR_022697) Copy
https://crispresso.pinellolab.partners.org/submission
Software suite of tools to qualitatively and quantitatively evaluate outcomes of genome editing experiments in which target loci are subject to deep sequencing and provides integrated, user friendly interface. Used for analysis of CRISPR-Cas9 genome editing outcomes from sequencing data. CRISPResso2 provides accurate and rapid genome editing sequence analysis.Used for analysis of deep sequencing data for rapid and intuitive interpretation of genome editing experiments.
Proper citation: CRISPResso (RRID:SCR_021538) Copy
https://github.com/marbl/salsa
Software tool for scaffold long read assemblies with Hi-C data.
Proper citation: SALSA (RRID:SCR_022013) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.