Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 11 showing 201 ~ 220 out of 854 results
Snippet view Table view Download 854 Result(s)
Click the to add this resource to a Collection

http://noble.gs.washington.edu/proj/sdp-svm/

A statistical framework for genomic data fusion is a computational framework for integrating and drawing inferences from a collection of genome-wide measurements. Each dataset is represented via a kernel function, which defines generalized similarity relationships between pairs of entities, such as genes or proteins. The kernel representation is both flexible and efficient, and can be applied to many different types of data. Furthermore, kernel functions derived from different types of data can be combined in a straightforward fashion. Recent advances in the theory of kernel methods have provided efficient algorithms to perform such combinations in a way that minimizes a statistical loss function. These methods exploit semidefinite programming techniques to reduce the problem of finding optimizing kernel combinations to a convex optimization problem. Computational experiments performed using yeast genome-wide datasets, including amino acid sequences, hydropathy profiles, gene expression data and known protein-protein interactions, demonstrate the utility of this approach. A statistical learning algorithm trained from all of these data to recognize particular classes of proteins--membrane proteins and ribosomal proteins--performs significantly better than the same algorithm trained on any single type of data. Matlab code to center a kernel matrix and Matlab code for normalization are available.

Proper citation: A statistical framework for genomic data fusion (RRID:SCR_007219) Copy   


  • RRID:SCR_005628

http://www.ncbi.nlm.nih.gov/guide/sitemap/

The National Center for Biotechnology Information''s listing of resources. Sort by alphabetical character, Databases, Downloads, Submissions, Tools and How-To; or by Topic: Chemicals & Bioassays; Data & Software; DNA & RNA; Domains & Structures; Genes & Expression; Genetics & Medicine; Genomes & Maps; Homology; Literature; Proteins; Sequence Analysis; Taxonomy; Training & Tutorials; Variation.

Proper citation: NCBI Resource List (RRID:SCR_005628) Copy   


http://www.ch.embnet.org/software/COILS_form.html

COILS is a program that compares a sequence to a database of known parallel two-stranded coiled-coils and derives a similarity score. By comparing this score to the distribution of scores in globular and coiled-coil proteins, the program then calculates the probability that the sequence will adopt a coiled-coil conformation.

Proper citation: COILS: Prediction of Coiled Coil Regions in Proteins (RRID:SCR_008440) Copy   


  • RRID:SCR_017647

    This resource has 1000+ mentions.

https://github.com/TransDecoder/TransDecoder

Software tool to identify candidate coding regions within transcript sequences, such as those generated by de novo RNA-Seq transcript assembly using Trinity, or constructed based on RNA-Seq alignments to genome using Tophat and Cufflinks.Starts from FASTA or GFF file. Can scan and retain open reading frames (ORFs) for homology to known proteins by using BlastP or Pfam search and incorporate results into obtained selection. Predictions can then be visualized by using genome browser such as IGV.

Proper citation: TransDecoder (RRID:SCR_017647) Copy   


https://www.synapse.org/#!Synapse:syn4921369/wiki/235539

Portal of PsychENCODE Consortium to study role of rare genetic variants involved in several psychiatric disorders. Database of regulatory elements, epigenetic modifications, RNA and protein in brain.

Proper citation: PsychENCODE Knowledge Portal (RRID:SCR_017500) Copy   


http://www.aniseed.cnrs.fr/

Database of ascidian embryonic development at the level of the genome (cis-regulatory sequences, gene expression, protein annotation), of the cell (morphology, fate, induction, lineage) or of the whole embryo (anatomy, morphogenesis). Currently, four organism models are described in Aniseed: Ciona intestinalis, Ciona savignyi, Halocynthia roretzi and Phallusia mammillata.
This version supports four sets of Ciona intestinalis transcript models: JGI v1.0, KyotoGrail 2005, KH and ENSEMBL, all functionally annotated, and grouped into Aniseedv3.0 gene models. Users can explore their expression profiles during normal or manipulated development, access validated cis-regulatory regions, get the molecular tools used to assay gene function, or all articles related to the function, or regulation of a given gene. Known transcriptional regulators and targets are listed for each gene, as are the gene regulatory networks acting in individual anatomical territories.
ANISEED is a community tool, and the direct involvement of external contributors is important to optimize the quality of the submitted data. Virtual embryo: The 3D Virtual embryo is available to download in the download section of the website.

Proper citation: Ascidian Network for InSitu Expression and Embryological Data (RRID:SCR_013030) Copy   


  • RRID:SCR_017118

    This resource has 1000+ mentions.

https://github.com/davidemms/OrthoFinder

Software Python application for comparative genomics analysis. Finds orthogroups and orthologs, infers rooted gene trees for all orthogroups and identifies all of gene duplcation events in those gene trees, infers rooted species tree for species being analysed and maps gene duplication events from gene trees to branches in species tree, improves orthogroup inference accuracy. Runs set of protein sequence files, one per species, in FASTA format.

Proper citation: OrthoFinder (RRID:SCR_017118) Copy   


  • RRID:SCR_018485

    This resource has 10+ mentions.

https://signor.uniroma2.it/

Software application to organize and store in structured format signaling information published in scientific literature. Information is stored as binary causative relationships between biological entities and can be represented graphically as activity flow. Each relationship is linked to literature reporting experimental evidence. Each node is annotated with chemical inhibitors that modulate its activity. Signaling information is mapped to human proteome. SIGNOR 2.0 stores manually annotated causal relationships between proteins and other biologically relevant entities including chemicals, phenotypes, complexes, etc with compliance to FAIR data principles.

Proper citation: SIGNOR (RRID:SCR_018485) Copy   


  • RRID:SCR_001043

http://www.msbioworks.com/

A protein mass spectrometry service provider that delivers data to industrial and government organizations as well as academic institutions. Protein services include protein identification, mapping, profiling, and mass measurement. Post-translational modification services include PTM profiling, phospho-screening, and glyco-screening. Quantitative proteomics services include workflows for label free, TMT, SILAC, and PRM. MS Bioworks also provides immunoprecipitated protein analysis and custom analysis.

Proper citation: MS Bioworks (RRID:SCR_001043) Copy   


  • RRID:SCR_000509

http://www.wriwindber.org/wriwindber/Platforms/TissueBanking.aspx

Under the direction of Stella Somiari, Ph.D., the tissue bank at Windber Research Institute acquires and banks large numbers of high quality and well annotated normal and diseased tissue specimens. These specimens are obtained from fully informed and consented donors using Institutional Review Board (IRB) approved protocols and are accompanied by detailed clinical, family history and demographic information. The tissue bank has established Standard Operating Procedures (SOPs) for tissue acquisition, handling, processing, packaging and shipping. All collaborators at participating clinics/medical centers utilize these procedures to ensure that the integrity of the specimen is maintained. Tissue types in our collection include plasma, serum, tissue embedded in optimum cutting temperature (OCT), formalin fixed paraffin embedded, and flash frozen. We also isolate and bank tissue derived products such as DNA, RNA and protein for research. Very stringent SOPs are in place for the process of extraction of these tissue-derived products and for quality control/quality assurance (QA/QC). The WRI tissue bank currently has 5 isothermal freezers each with the capacity to store 36,000 specimens. For all specimens obtained from surgical procedures, routine histology is performed to obtain representative Hematoxylin and Eosin (H & E) stained sections for imaging/archiving. All H & E sections are imaged on the Trestle SL-50 imaging system and these images are available online to designated collaborative sites. A certified pathologist verifies all tissue specimens and WRI has telepathology capabilities, which can also be utilized for pathology verification when a second pathologist opinion is required to confirm specimen diagnosis. Other uses of the telepathology capabilities include the verification of Laser Capture Microdissection (LCM) sections (by pathologist) to ensure the correct areas are captured for research. The telepathology system at WRI is the Trestle Corporation's Medmicro system, which permits the pathologist to remotely view, navigate and share images at sub-micron resolution over standard internet connections in real-time.

Proper citation: Windber Tissue Bank (RRID:SCR_000509) Copy   


  • RRID:SCR_001010

    This resource has 100+ mentions.

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome

Data analysis service whose programs search protein databases using a protein query. The algorithms used include blastp, psi-blast, phi-blast, and delta-blast.

Proper citation: BLASTP (RRID:SCR_001010) Copy   


  • RRID:SCR_001402

    This resource has 1+ mentions.

http://www.btool.org/WegoLoc

Data analysis service that predicts protein subcellular localizations of animal, fungal, plant, and human proteins based on sequence similarity and gene ontology information.

Proper citation: WegoLoc (RRID:SCR_001402) Copy   


  • RRID:SCR_003552

    This resource has 1+ mentions.

http://biomine.cs.helsinki.fi/

Service that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. In particular, it formulates protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph.

Proper citation: Biomine (RRID:SCR_003552) Copy   


http://webdocs.cs.ualberta.ca/~bioinfo/PA/Sub/

Web server specialized to predict the subcellular localization of proteins using established machine learning techniques.

Proper citation: Proteome Analyst Specialized Subcellular Localization Server (RRID:SCR_003143) Copy   


  • RRID:SCR_016118

    This resource has 10+ mentions.

http://www.zucic.org/garlic/

Software application for visualization and editing of biomolecules. Used for the investigation of membrane proteins, visualization of other proteins and geometric objects, and analysis of protein sequences.

Proper citation: Garlic (RRID:SCR_016118) Copy   


  • RRID:SCR_016072

    This resource has 50+ mentions.

http://disulfind.dsi.unifi.it/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023, Software for predicting the disulfide bonding state of cysteines and their disulfide connectivity, starting from a protein sequence alone and may be useful in other genomic annotation tasks.

Proper citation: DISULFIND (RRID:SCR_016072) Copy   


  • RRID:SCR_015945

    This resource has 1000+ mentions.

http://molevol.cmima.csic.es/castresana/Gblocks_server.html

Software that eliminates poorly aligned positions and divergent regions of a DNA or protein alignment so that it becomes more suitable for phylogenetic analysis., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Gblocks (RRID:SCR_015945) Copy   


  • RRID:SCR_016085

http://emboss.sourceforge.net/apps/cvs/embassy/index.html#DOMALIGN

Software commands for Extra EMBOSS and protein domain alignment. The DOMALIGN programs were developed by Jon Ison and colleagues at MRC HGMP for their protein domain research. They are included as an EMBASSY package as a work in progress.

Proper citation: DOMALIGN (RRID:SCR_016085) Copy   


  • RRID:SCR_016056

https://github.com/osallou/cassiopee-c

Software to scan an input genomic sequence (dna/rna/protein). It searchs for a subsequence that has an exact match, substitutions (Hamming distance), and/or insertion/deletions with supporting alphabet ambiguity.

Proper citation: Cassiopee (RRID:SCR_016056) Copy   


  • RRID:SCR_016326

    This resource has 10+ mentions.

https://github.com/Sung-Huan/ANNOgesic

Software tool for bacterial/archaeal RNA-Seq based genome annotations. Used for integrating, detecting, predicting, and grouping RNA-Seq data.

Proper citation: ANNOgesic (RRID:SCR_016326) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X