Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 10 showing 181 ~ 200 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection

http://www.cs.cmu.edu/~jernst/stem/

The Short Time-series Expression Miner (STEM) is a Java program for clustering, comparing, and visualizing short time series gene expression data from microarray experiments (~8 time points or fewer). STEM allows researchers to identify significant temporal expression profiles and the genes associated with these profiles and to compare the behavior of these genes across multiple conditions. STEM is fully integrated with the Gene Ontology (GO) database supporting GO category gene enrichment analyses for sets of genes having the same temporal expression pattern. STEM also supports the ability to easily determine and visualize the behavior of genes belonging to a given GO category or user defined gene set, identifying which temporal expression profiles were enriched for these genes. (Note: While STEM is designed primarily to analyze data from short time course experiments it can be used to analyze data from any small set of experiments which can naturally be ordered sequentially including dose response experiments.) Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Short Time-series Expression Miner (STEM) (RRID:SCR_005016) Copy   


  • RRID:SCR_005675

    This resource has 100+ mentions.

http://www.bumc.bu.edu/cardiovascularproteomics/cpctools/strap/

Software program that automatically annotates a protein list with information that helps in the meaningful interpretation of data from mass spectrometry and other techniques. It takes protein lists as input, in the form of plain text files, protXML files (usually from the TPP), or Dat files from MASCOT search results. From this, it generates protein annotation tables, and a variety of GO charts to aid individual and differential analysis of proteomics data. It downloads information from mainly the Uniprot and EBI QuickGO databases. STRAP requires Windows XP or higher with at least version 3.5 of the Microsoft .NET Framework installed. Platform: Windows compatible

Proper citation: STRAP (RRID:SCR_005675) Copy   


  • RRID:SCR_008234

    This resource has 1+ mentions.

http://www.cs.ualberta.ca/~bioinfo/PA/GOSUB/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 30, 2015. Refer to Proteome Analyst 3.0. Subcellular Localization and GO General Molecular Function predictions for many model organism proteomes using Protein Analyst, with a very high coverage rate. When users blast their proteins against the database of results, they will not only be shown blast homologs from the model organisms, but also the Subcellular Localization and GO General Molecular Function predictions as well.

Proper citation: Proteome Analyst PA-GOSUB (RRID:SCR_008234) Copy   


http://david.abcc.ncifcrf.gov/content.jsp?file=/ease/ease1.htm&type=1

Windows(c) desktop software application, customizable and standalone, that facilitates the biological interpretation of gene lists derived from the results of microarray, proteomic, and SAGE experiments. Provides statistical methods for discovering enriched biological themes within gene lists, generates gene annotation tables, and enables automated linking to online analysis tools. Offers statistical models to deal with multi-test comparison problem. Platform: Windows compatible

Proper citation: EASE: the Expression Analysis Systematic Explorer (RRID:SCR_013361) Copy   


  • RRID:SCR_000644

    This resource has 1+ mentions.

Ratings or validation data are available for this resource

http://www.avadis-ngs.com

Software integrated platform that provides analysis, management and visualization tools for next-generation sequencing data. It supports workflows for RNA-Seq, DNA-Seq, ChIP-Seq and small RNA-Seq experiments. Avadis has a built-in Gene Ontology browser to view ontology hierarchies. There are common ontology paths for multiple genes. Platform has collection of data / text mining algorithms, data visualization libraries, workflow/application automation layers, and enterprise data organization functions. These functions are available as libraries that allow developers to rapidly build software prototypes, applications and off-the-shelf products. The collection of algorithms and visualizations in AVADIS grows as new applications using the platform are developed. Currently, the algorithms that AVADIS platform contains range from general purpose statistical mining and modelling algorithms, to text mining algorithms, to very application-specific algorithms for microarray / NGS data analysis, QSAR modelling and biological networks analysis. AVADIS has a collection of powerful mining algorithms like PCA, ANOVA, T-test, clustering, classification and regression methods. The range of visualizations includes most statistical and data modelling related graphing views, and very application-specific visualizations. Some of the statistical views include 2D/3D scatter plots, profile plots, heat maps, histograms and matrix plot; data modelling relevant views include dendrograms, cluster profiles, similarity images and SOM U-matrices. Application-specific views in AVADIS include pathway network views, genome browsers, chemical structure views and pipe-line views. Platform: Windows compatible, Mac OS X compatible, Linux compatible,

Proper citation: Avadis (RRID:SCR_000644) Copy   


  • RRID:SCR_004426

    This resource has 5000+ mentions.

http://www.uniprot.org/help/uniprotkb

Central repository for collection of functional information on proteins, with accurate and consistent annotation. In addition to capturing core data mandatory for each UniProtKB entry (mainly, the amino acid sequence, protein name or description, taxonomic data and citation information), as much annotation information as possible is added. This includes widely accepted biological ontologies, classifications and cross-references, and experimental and computational data. The UniProt Knowledgebase consists of two sections, UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot (reviewed) is a high quality manually annotated and non-redundant protein sequence database which brings together experimental results, computed features, and scientific conclusions. UniProtKB/TrEMBL (unreviewed) contains protein sequences associated with computationally generated annotation and large-scale functional characterization that await full manual annotation. Users may browse by taxonomy, keyword, gene ontology, enzyme class or pathway.

Proper citation: UniProtKB (RRID:SCR_004426) Copy   


http://www.emouseatlas.org/emage

A database of in situ gene expression data in the developing mouse embryo and an accompanying suite of tools to search and analyze the data. mRNA in situ hybridization, protein immunohistochemistry and transgenic reporter data is included. The data held is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. The conceptual framework which houses the descriptions of the gene expression patterns in EMAGE is the EMAP Mouse Embryo Anatomy Atlas. This consists of a set of 3D virtual embryos at different stages of development, as well as an accompanying ontology of anatomical terms found at each stage. The raw data images can be conventional 2D photographs (of sections or wholemount specimens) or 3D images of wholemount specimens derived from Optical Projection Tomography (OPT) or confocal microscopy. Users may submit data using a Data submission tool or without.

Proper citation: EMAGE Gene Expression Database (RRID:SCR_005391) Copy   


http://coot.embl.de/g2d/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A database of candidate genes for mapped inherited human diseases. Candidate priorities are automatically established by a data mining algorithm that extracts putative genes in the chromosomal region where the disease is mapped, and evaluates their possible relation to the disease based on the phenotype of the disorder. Data analysis uses a scoring system developed for the possible functional relations of human genes to genetically inherited diseases that have been mapped onto chromosomal regions without assignment of a particular gene. Methodology can be divided in two parts: the association of genes to phenotypic features, and the identification of candidate genes on a chromosonal region by homology. This is an analysis of relations between phenotypic features and chemical objects, and from chemical objects to protein function terms, based on the whole MEDLINE and RefSeq databases.

Proper citation: Candidate Genes to Inherited Diseases (RRID:SCR_008190) Copy   


  • RRID:SCR_006943

    This resource has 100+ mentions.

http://genecodis.cnb.csic.es/

Web-based tool for the ontological analysis of large lists of genes. It can be used to determine biological annotations or combinations of annotations that are significantly associated to a list of genes under study with respect to a reference list. As well as single annotations, this tool allows users to simultaneously evaluate annotations from different sources, for example Biological Process and Cellular Component categories of Gene Ontology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneCodis (RRID:SCR_006943) Copy   


  • RRID:SCR_005744

    This resource has 10+ mentions.

http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/publications/GeneMerge.html

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Web-based and standalone application that returns a wide range of functional genomic data for a given set of study genes and provides rank scores for over-representation of particular functions or categories in the data. It uses the hypergeometric test statistic which returns statistically correct results for samples of all sizes and is the #2 fastest GO tool available (Khatri and Draghici, 2005). GeneMerge can be used with any discrete, locus-based annotation data, including, literature references, genetic interactions, mutant phenotypes as well as traditional Gene Ontology queries. GeneMerge is particularly useful for the analysis of microarray data and other large biological datasets. The big advantage of GeneMerge over other similar programs is that you are not limited to analyzing your data from the perspective of a pre-packaged set of gene-association data. You can download or create gene-association files to analyze your data from an unlimited number of perspectives. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMerge (RRID:SCR_005744) Copy   


  • RRID:SCR_001601

http://cellfinder.de/about/ontology/

Structured vocabulary to organize cell-associated data and to place these data in clearly defined semantic relations to other biological facts. It describes cell types, their properties and origin and links this information to other existing ontologies like the Cell Ontology (CL), Foundational Model of Anatomy (FMA), Gene Ontology (GO), Mouse Anatomy and others using the top-level ontology BioTop.

Proper citation: CELDA Ontology (RRID:SCR_001601) Copy   


  • RRID:SCR_001727

    This resource has 50+ mentions.

http://matrixdb.univ-lyon1.fr/

Freely available database focused on interactions established by extracellular proteins and polysaccharides, taking into account the multimeric nature of the extracellular proteins (e.g. collagens, laminins and thrombospondins are multimers). MatrixDB is an active member of the International Molecular Exchange (IMEx) consortium and has adopted the PSI-MI standards for annotating and exchanging interaction data. It includes interaction data extracted from the literature by manual curation, and offers access to relevant data involving extracellular proteins provided by the IMEx partner databases through the PSICQUIC webservice, as well as data from the Human Protein Reference Database. The database reports mammalian protein-protein and protein-carbohydrate interactions involving extracellular molecules. Interactions with lipids and cations are also reported. MatrixDB is focused on mammalian interactions, but aims to integrate interaction datasets of model organisms when available. MatrixDB provides direct links to databases recapitulating mutations in genes encoding extracellular proteins, to UniGene and to the Human Protein Atlas that shows expression and localization of proteins in a large variety of normal human tissues and cells. MatrixDB allows researchers to perform customized queries and to build tissue- and disease-specific interaction networks that can be visualized and analyzed with Cytoscape or Medusa. Statistics (2013): 2283 extracellular matrix interactions including 2095 protein-protein and 169 protein-glycosaminoglycan interactions.

Proper citation: MatrixDB (RRID:SCR_001727) Copy   


http://datahub.io/dataset/kupkb

A collection of omics datasets (mRNA, proteins and miRNA) that have been extracted from PubMed and other related renal databases, all related to kidney physiology and pathology giving KUP biologists the means to ask queries across many resources in order to aggregate knowledge that is necessary for answering biological questions. Some microarray raw datasets have also been downloaded from the Gene Expression Omnibus and analyzed by the open-source software GeneArmada. The Semantic Web technologies, together with the background knowledge from the domain's ontologies, allows both rapid conversion and integration of this knowledge base. SPARQL endpoint http://sparql.kupkb.org/sparql The KUPKB Network Explorer will help you visualize the relationships among molecules stored in the KUPKB. A simple spreadsheet template is available for users to submit data to the KUPKB. It aims to capture a minimal amount of information about the experiment and the observations made.

Proper citation: Kidney and Urinary Pathway Knowledge Base (RRID:SCR_001746) Copy   


https://rgd.mcw.edu/rgdweb/portal/home.jsp?p=4

An integrated resource for information on genes, QTLs and strains associated with diabetes. The portal provides easy acces to data related to both Type 1 and Type 2 Diabetes and Diabetes-related Obesity and Hypertension, as well as information on Diabetic Complications. View the results for all the included diabetes-related disease states or choose a disease category to get a pull-down list of diseases. A single click on a disease will provide a list of related genes, QTLs, and strains as well as a genome wide view of these via the GViewer tool. A link from GViewer to GBrowse shows the genes and QTLs within their genomic context. Additional pages for Phenotypes, Pathways and Biological Processes provide one-click access to data related to diabetes. Tools, Related Links and Rat Strain Models pages link to additional resources of interest to diabetes researchers.

Proper citation: Diabetes Disease Portal (RRID:SCR_001660) Copy   


  • RRID:SCR_001881

    This resource has 10000+ mentions.

https://david.ncifcrf.gov/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025. Bioinformatics resource system including web server and web service for functional annotation and enrichment analyses of gene lists. Consists of comprehensive knowledgebase and set of functional analysis tools. Includes gene centered database integrating heterogeneous gene annotation resources to facilitate high throughput gene functional analysis.

Proper citation: DAVID (RRID:SCR_001881) Copy   


  • RRID:SCR_001791

    This resource has 1+ mentions.

http://mousecyc.jax.org/

A manually curated database of both known and predicted metabolic pathways for the laboratory mouse. It has been integrated with genetic and genomic data for the laboratory mouse available from the Mouse Genome Informatics database and with pathway data from other organisms, including human. The database records for 1,060 genes in Mouse Genome Informatics (MGI) are linked directly to 294 pathways with 1,790 compounds and 1,122 enzymatic reactions in MouseCyc. (Aug. 2013) BLAST and other tools are available. The initial focus for the development of MouseCyc is on metabolism and includes such cell level processes as biosynthesis, degradation, energy production, and detoxification. MouseCyc differs from existing pathway databases and software tools because of the extent to which the pathway information in MouseCyc is integrated with the wealth of biological knowledge for the laboratory mouse that is available from the Mouse Genome Informatics (MGI) database.

Proper citation: MouseCyc (RRID:SCR_001791) Copy   


http://ahd.cbi.pku.edu.cn

Database providing a systematic and comprehensive view of morphological phenotypes regulated by plant hormones, as well as regulatory genes participating in numerous plant hormone responses. By integrating the data from mutant studies, transgenic analysis and gene ontology annotation, genes related to the stimulus of eight plant hormones were identified, including abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid and salicylic acid. Another pronounced characteristics of this database is that a phenotype ontology was developed to precisely describe all kinds of morphological processes regulated by plant hormones with standardized vocabularies. To increase the coverage of phytohormone related genes, the database has been updated from AHD to AHD2.0 adding and integrating several pronounced features: (1) added 291 newly published Arabidopsis hormone related genes as well as corrected information (e.g. the arguable ABA receptors) based on the recent 2-year literature; (2) integrated orthologues of sequenced plants in OrthoMCLDB into each gene in the database; (3) integrated predicted miRNA splicing site in each gene in the database; (4) provided genetic relationship of these phytohormone related genes mining from literature, which represents the first effort to construct a relatively comprehensive and complex network of hormone related genes as shown in the home page of our database; (5) In convenience to in-time bioinformatics analysis, they also provided links to a powerful online analysis platform Weblab that they have recently developed, which will allow users to readily perform various sequence analysis with these phytohormone related genes retrieved from AHD2.0; (6) provided links to other protein databases as well as more expression profiling information that would facilitate users for a more systematic analysis related to phytohormone research. Please help to improve the database with your contributions.

Proper citation: Arabidopsis Hormone Database (RRID:SCR_001792) Copy   


http://www.megabionet.org/atpid/webfile/

Centralized platform to depict and integrate the information pertaining to protein-protein interaction networks, domain architecture, ortholog information and GO annotation in the Arabidopsis thaliana proteome. The Protein-protein interaction pairs are predicted by integrating several methods with the Naive Baysian Classifier. All other related information curated is manually extracted from published literature and other resources from some expert biologists. You are welcomed to upload your PPI or subcellular localization information or report data errors. Arabidopsis proteins is annotated with information (e.g. functional annotation, subcellular localization, tissue-specific expression, phosphorylation information, SNP phenotype and mutant phenotype, etc.) and interaction qualifications (e.g. transcriptional regulation, complex assembly, functional collaboration, etc.) via further literature text mining and integration of other resources. Meanwhile, the related information is vividly displayed to users through a comprehensive and newly developed display and analytical tools. The system allows the construction of tissue-specific interaction networks with display of canonical pathways.

Proper citation: Arabidopsis thaliana Protein Interactome Database (RRID:SCR_001896) Copy   


  • RRID:SCR_002250

    This resource has 10+ mentions.

https://scicrunch.org/resolver/SCR_002250

THIS RESOURCE IS NO LONGER IN SERVICE. Documented Jul 19, 2024. Metadatabase manually curated that provides web accessible tools related to genomics, transcriptomics, proteomics and metabolomics. Used as informative directory for multi-omic data analysis.

Proper citation: OMICtools (RRID:SCR_002250) Copy   


  • RRID:SCR_002036

    This resource has 100+ mentions.

http://www.candidagenome.org/

Database of genetic and molecular biological information about Candida albicans. Contains information about genes and proteins, descriptions and classifications of their biological roles, molecular functions, and subcellular localizations, gene, protein, and chromosome sequence information, tools for analysis and comparison of sequences and links to literature information. Each CGD gene or open reading frame has an individual Locus Page. Genetic loci that are not tied to DNA sequence also have Locus Pages. Provides Gene Ontology, GO, to all its users. Three ontologies that comprise GO (Molecular Function, Cellular Component, and Biological Process) are used by multiple databases to annotate gene products, so that this common vocabulary can be used to compare gene products across species. Development of ontologies is ongoing in order to incorporate new information. Data submissions are welcome.

Proper citation: Candida Genome Database (RRID:SCR_002036) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X