Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 10 showing 181 ~ 200 out of 786 results
Snippet view Table view Download 786 Result(s)
Click the to add this resource to a Collection

http://www.nitrc.org/projects/phycaa_plus/

Software algorithm that automatically estimates and removes physiological noise in BOLD fMRI data, including the effects of heartbeat and respiration. This algorithm (1) masks out high-variance CSF and vascular tracts that may otherwise confound analyses, and (2) regresses out noise timeseries in grey matter tissue, using an adaptive multivariate component decomposition (Canonical Autocorrelations Analysis). PHYCAA+ is an efficient, automated procedure that does NOT require external measures of physiology, nor does it require the user to manually identify noise components. Based on the peer-reviewed article: Churchill & Strother (2013). PHYCAA+: An Optimized, Adaptive Procedure for Measuring and Controlling Physiological Noise in BOLD fMRI. NeuroImage 82: 306-325

Proper citation: PHYCAA+: adaptive physiological noise correction for BOLD fMRI (RRID:SCR_002514) Copy   


https://pdbp.ninds.nih.gov

Common data management resource and web portal to promote discovery of Parkinson's Disease diagnostic and progression biomarker candidates for early detection and measurement of disease progression. PDBP will serve as multi-faceted platform for integrating existing biomarker efforts, standardizing data collection and management across these efforts, accelerating discovery of new biomarkers, and fostering and expanding collaborative opportunities for all stakeholders.

Proper citation: Parkinson’s Disease Biomarkers Program Data Management Resource (PDBP DMR) (RRID:SCR_002517) Copy   


  • RRID:SCR_002595

http://idealab.ucdavis.edu/software/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 14,2026. A collection of software tools used for processing and organizing MRI data. The Dicom Importer allows you to to view, assemble, and organize dicom files. Subject Library is a filesystem-based search and reporting tool that can be configured to work with many different organization schemes. This package also contains a python library that can be used to write scripts for custom tasks.

Proper citation: Subject Library (RRID:SCR_002595) Copy   


  • RRID:SCR_002511

    This resource has 100+ mentions.

http://code.google.com/p/panda-tool/

Software matlab toolbox for pipeline processing of diffusion MRI images. For each subject, PANDA can provide outputs in 2 types: i) diffusion parameter data that is ready for statistical analysis; ii) brain anatomical networks constructed by using diffusion tractography. Particularly, there are 3 types of resultant diffusion parameter data: WM atlas-level, voxel-level and TBSS-level. The brain network generated by PANDA has various edge definitions, e.g. fiber number, length, or FA-weighted. The key advantages of PANDA are as follows: # fully-automatic processing from raw DICOM/NIFTI to final outputs; # Supporting both sequential and parallel computation. The parallel environment can be a single desktop with multiple-cores or a computing cluster with a SGE system; # A very friendly GUI (graphical user interface).

Proper citation: PANDA (RRID:SCR_002511) Copy   


  • RRID:SCR_002596

    This resource has 50+ mentions.

http://www.nitrc.org/projects/tapir/

A set of command line tools allowing 2D and 3D image registration, mainly for medical imaging (although also relevant to other image registration problems).

Proper citation: TAPIR (RRID:SCR_002596) Copy   


http://sve.bmap.ucla.edu/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 14,2026. An automated online framework for performing validation studies of skull-stripping methods. Registered users may download 40 T1 MRI volumes, skull-strip them with the algorithm of their choice, and upload their segmentation results to the SVE website. The server will then compare the 40 skull-stripped results against a set of manually generated brain masks. The server computes a series of measures for the uploaded data, including Jaccard and Dice measures. It also produces images for visualizing the spatial location of the segmentation errors relative to a common space. The results are archived on the server, and the measures are viewable by visitors to the site.

Proper citation: Segmentation Validation Engine (RRID:SCR_002591) Copy   


  • RRID:SCR_002503

    This resource has 10+ mentions.

http://www.dartmouth.edu/~nir/nirfast/

Software package for modeling Near-Infrared light transport in tissue and image reconstruction. This includes: Standard single wavelength absorption and reduced scatter, Multi-wavelength spectrally constrained models and Fluorescence models.

Proper citation: Nirfast (RRID:SCR_002503) Copy   


http://www.nirep.org/

Project to develop software tools and provide shared image validation databases for rigorous testing of non-rigid image registration algorithms. NIREP will extend the scope of prior validation projects by developing evaluation criteria and metrics using large image populations, using richly annotated image databases, using computer simulated data, and increasing the number and types of evaluation criteria. The goal of this project is to establish, maintain, and endorse a standardized set of relevant benchmarks and metrics for performance evaluation of nonrigid image registration algorithms. Furthermore, these standards will be incorporated into an exportable computer program to automatically evaluate the registration accuracy of nonrigid image registration algorithms.

Proper citation: Non-Rigid Image Registration Evaluation Project (RRID:SCR_002505) Copy   


  • RRID:SCR_002823

    This resource has 1000+ mentions.

http://www.fmrib.ox.ac.uk/fsl/

Software library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. Include registration, atlases, diffusion MRI tools for parameter reconstruction and probabilistic taractography, and viewer. Several brain atlases, integrated into FSLView and Featquery, allow viewing of structural and cytoarchitectonic standard space labels and probability maps for cortical and subcortical structures and white matter tracts. Includes Harvard-Oxford cortical and subcortical structural atlases, Julich histological atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Talairach atlas, MNI structural atlas, and Cerebellum atlas.

Proper citation: FSL (RRID:SCR_002823) Copy   


  • RRID:SCR_002759

    This resource has 10+ mentions.

http://sumsdb.wustl.edu/sums/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures

Proper citation: SumsDB (RRID:SCR_002759) Copy   


  • RRID:SCR_003112

    This resource has 10+ mentions.

http://studyforrest.org

An MRI data repository that holds a set of 7 Tesla images and behavioral metadata. Multi-faceted brain image archive with behavioral measurements. For each participant a number of different scans and auxiliary recordings have been obtained. In addition, several types of minimally preprocessed data are also provided. The full description of the data release is available in a dedicated publication. This project invites anyone to participate in a decentralized effort to explore the opportunities of open science in neuroimaging by documenting how much (scientific) value can be generated out of a single data release by publication of scientific findings derived from a dataset, algorithms and methods evaluated on this dataset, and/or extensions of this dataset by acquisition and integration of new data.

Proper citation: studyforrest.org (RRID:SCR_003112) Copy   


  • RRID:SCR_003069

    This resource has 100+ mentions.

http://brainmap.org/

A community database of published functional and structural neuroimaging experiments with both metadata descriptions of experimental design and activation locations in the form of stereotactic coordinates (x,y,z) in Talairach or MNI space. BrainMap provides not only data for meta-analyses and data mining, but also distributes software and concepts for quantitative integration of neuroimaging data. The goal of BrainMap is to develop software and tools to share neuroimaging results and enable meta-analysis of studies of human brain function and structure in healthy and diseased subjects. It is a tool to rapidly retrieve and understand studies in specific research domains, such as language, memory, attention, reasoning, emotion, and perception, and to perform meta-analyses of like studies. Brainmap contains the following software: # Sleuth: database searches and Talairach coordinate plotting (this application requires a username and password) # GingerALE: performs meta-analyses via the activation likelihood estimation (ALE) method; also converts coordinates between MNI and Talairach spaces using icbm2tal # Scribe: database entry of published functional neuroimaging papers with coordinate results

Proper citation: brainmap.org (RRID:SCR_003069) Copy   


  • RRID:SCR_002998

    This resource has 10+ mentions.

http://briansimulator.org/

Software Python package for simulating spiking neural networks. Useful for neuroscientific modelling at systems level, and for teaching computational neuroscience. Intuitive and efficient neural simulator.

Proper citation: Brian Simulator (RRID:SCR_002998) Copy   


  • RRID:SCR_005619

    This resource has 1000+ mentions.

http://slicer.org/

A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.

Proper citation: 3D Slicer (RRID:SCR_005619) Copy   


  • RRID:SCR_006126

    This resource has 1+ mentions.

http://www.birncommunity.org/tools-catalog/human-imaging-database-hid/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented October 5, 2017.

Database management system developed to handle the increasingly large and diverse datasets collected as part of the MBIRN and FBIRN collaboratories and throughout clinical imaging communities at large. The HID can be extended to contain relevant information concerning experimental subjects, assessments of subjects, the experimental data collected, the experimental protocols, and other metadata normally included with experiments.

Proper citation: Human Imaging Database (RRID:SCR_006126) Copy   


http://bishopw.loni.ucla.edu/AIR5/

A tool for automated registration of 3D (and 2D) images within and across subjects and within and sometimes across imaging modalities. The AIR library can easily incorporate automated image registration into site specific programs adapted to your particular needs.

Proper citation: Automated Image Registration (RRID:SCR_005944) Copy   


  • RRID:SCR_006139

    This resource has 1+ mentions.

http://cibsr.stanford.edu/tools/

A multiplatform, highly modular image processing and visualization application which is under development by the Center for Interdisciplinary Brain Sciences Research. The goal of this project is provide a framework application for neuroimaging which facilitates the interchange of software tools developed by researchers. BrainImageJava can: * Delineate ROIs in slices along X, Y, or Z axes, with 3D feedback in the other axes. * Create and display triangular mesh surfaces from MRI volumes. * Draw Surfaces-of-Interest (SOIs) in 3D, and edit them in a planar display. * Set Talairach grid on a volume, export an AC/PC stack, and measure the values within each grid unit. This 3D image processing and analysis program for the Apple Macintosh PowerPC is based on the public domain application, NIH Image. It includes interactive procedures for 3D MRI quantification including semi-automated procedures for removing non-brain tissues from images, fuzzy segmentation of tissue compartments, global or local parcellation (based on the Talairach atlas), region-growing, etc. The last version of the software included multiplatform capability, volume visualization and advanced image analysis tools.

Proper citation: BrainImage Software (RRID:SCR_006139) Copy   


http://freesurfer.net/fswiki/HippocampalSubfieldSegmentation

A software package for automatic segmentation of hippocampal subfields in magnetic resonance imges. Given a pair of T1-weighted and T2-weighted images (the latter acquired using a protocol tuned for hippocampus imaging), ASHS will automatically label main subfields of the hippocampus, and some extra-hippocampal structures, using multi-atlas segmentation. The main method is described in the Yushkevich et al. 2011 Neuroimage paper (http://tinyurl.com/cffrp3p). * execution requires: Advanced Normalization Tools, FSL

Proper citation: Segmentation of Hippocampus Subfields (RRID:SCR_005996) Copy   


  • RRID:SCR_005994

    This resource has 100+ mentions.

http://web.mit.edu/swg/software.htm

Toolbox for post-processing fMRI data. Includes software for comprehensive analysis of sources of artifacts in timeseries data including spiking and motion. Most compatible with SPM processing, but adaptable for FSL as well. * Operating System: MacOS, Windows, Linux * Programming Language: MATLAB * Supported Data Format: ANALYZE

Proper citation: Artifact Detection Tools (RRID:SCR_005994) Copy   


  • RRID:SCR_005984

    This resource has 10+ mentions.

http://www.brain-map.org/api/index.html

API and demo application for accessing the Allen Brain Atlas Mouse Brain data. Data available via the API includes download high resolution images, expression data from a 3D volume, 3D coordinates of the Allen Reference Atlas, and searching genes with similar gene expression profiles using NeuroBlast. Data made available includes: * High resolution images for gene expression, connectivity, and histology experiments, as well as annotated atlas images * 3-D expression summaries registered to a reference space for the Mouse Brain and Developing Mouse Brain * Primary microarray results for the Human Brain and Non-Human Primate * RNA sequencing results for the Developing Human Brain * MRI and DTI files for Human Brain The API consists of the following resources: * RESTful model access * Image download service * 3-D expression summary download service * Differential expression search services * NeuroBlast correlative searches * Image-to-image synchronization service * Structure graph download service

Proper citation: Allen Brain Atlas API (RRID:SCR_005984) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X