Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
Consortium that puts sequences into a chromosome context and provides the best possible reference assembly for human, mouse, and zebrafish via FTP. Tools to facilitate the curation of genome assemblies based on the sequence overlaps of long, high quality sequences.
Proper citation: Genome Reference Consortium (RRID:SCR_006553) Copy
http://www.geenivaramu.ee/en/tools/gwama
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software tool for meta analysis of whole genome association data.
Proper citation: GWAMA (RRID:SCR_006624) Copy
Model organism database for the social amoeba Dictyostelium discoideum that provides the biomedical research community with integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ''''reference genome'''' in the Amoebozoa clade. They highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase. The Dicty Stock Center currently holds over 1500 strains targeting over 930 different genes. There are over 100 different distinct amoebozoan species. In addition, the collection contains nearly 600 plasmids and other materials such as antibodies and cDNA libraries. The strain collection includes: * strain catalog * natural isolates * MNNG chemical mutants * tester strains for parasexual genetics * auxotroph strains * null mutants * GFP-labeled strains for cell biology * plasmid catalog The Dicty Stock Center can accept Dictyostelium strains, plasmids, and other materials relevant for research using Dictyostelium such as antibodies and cDNA or genomic libraries.
Proper citation: Dictyostelium discoideum genome database (RRID:SCR_006643) Copy
http://rice.plantbiology.msu.edu/
Database and resource that provides sequence and annotation data for the rice genome. This website provides genome sequence from the Nipponbare subspecies of rice and annotation of the 12 rice chromosomes. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 75 tracks of annotation. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads. Rice is a model species for the monocotyledonous plants and the cereals which are the greatest source of food for the world''s population. While rice genome sequence is available through multiple sequencing projects, high quality, uniform annotation is required in order for genome sequence data to be fully utilized by researchers. The existence of a common gene set and uniform annotation allows researchers within the rice community to work from a common resource so that their results can be more easily interpreted by other scientists. The objective of this project has always been to provide high quality annotation for the rice genome. They generated, refined and updated gene models for the estimated 40,000-60,000 total rice genes, provided standardized annotation for each model, linked each model to functional annotation including expression data, gene ontologies, and tagged lines. They have provided a resource to extend the annotation of the rice genome to other plant species by providing comparative alignments to other plant species. Analysis/Tools are available including: BLAST, Locus Name Search, Functional Term Search, Protein Domain Search, Anatomy Expression Viewer, Highly Expressed Genes
Proper citation: Rice Genome Annotation (RRID:SCR_006663) Copy
DPVweb provides a central source of information about viruses, viroids and satellites of plants, fungi and protozoa. Comprehensive taxonomic information, including brief descriptions of each family and genus, and classified lists of virus sequences are provided. The database also holds detailed, curated, information for all sequences of viruses, viroids and satellites of plants, fungi and protozoa that are complete or that contain at least one complete gene. For comparative purposes, it also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA genome. The start and end positions of each feature (gene, non-translated region and the like) have been recorded and checked for accuracy. As far as possible, nomenclature for genes and proteins are standardized within genera and families. Sequences of features (either as DNA or amino acid sequences) can be directly downloaded from the website in FASTA format. The sequence information can also be accessed via client software for PC computers (freely downloadable from the website) that enable users to make an easy selection of sequences and features of a chosen virus for further analyses. The public sequence databases contain vast amounts of data on virus genomes but accessing and comparing the data, except for relatively small sets of related viruses can be very time consuming. The procedure is made difficult because some of the sequences on these databases are incorrectly named, poorly annotated or redundant. The NCBI Reference Sequence project (1) provides a comprehensive, integrated, non-redundant set of sequences, including genomic DNA, transcript (RNA) and protein products, for major research organisms. This now includes curated information for a single sequence of each fully sequenced virus species. While this is a welcome development, it can only deal with complete sequences. An important feature of DPV is the opportunity to access genes (and other features) of multiple sequences quickly and accurately. Thus, for example, it is easy to obtain the nucleotide or amino acid sequences of all the available accessions of the coat protein gene of a given virus species or for a group of viruses. To increase its usefulness further, DPVweb also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA (ssDNA) genome. Sponsors: This site is supported by the Association of Applied Biologists and the Zhejiang Academy of Agricultural Sciences, Hangzhou, People''s Republic of China.
Proper citation: Descriptions of Plant Viruses (RRID:SCR_006656) Copy
http://inparanoid.sbc.su.se/cgi-bin/index.cgi
Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.
Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy
An easy-to-use, highly customizable genome browser you can use to visualize and explore genomic data and annotations, including RNA-Seq, ChIP-Seq, tiling array data, and more.
Proper citation: IGB (RRID:SCR_011792) Copy
https://www.genome-cloud.com/user/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 29, 2019. A cloud platform for next-generation sequencing analysis and storage. Services include: * g-Analysis: Automated genome analysis pipelines at your fingertips * g-Cluster: Easy-of-use and cost-effective genome research infrastructure * g-Storage: A simple way to store, share and protect data * g-Insight: Accurate analysis and interpretation of biological meaning of genome data
Proper citation: GenomeCloud (RRID:SCR_011886) Copy
Web based instant protein network modeler for newly sequenced species. Web server designed to instantly construct genome scale protein networks using protein sequence data. Provides network visualization, analysis pages and solution for instant network modeling of newly sequenced species.
Proper citation: JiffyNet (RRID:SCR_011954) Copy
A genome browser specialized in next-generation sequencing data.
Proper citation: GenomeJack (RRID:SCR_012026) Copy
Freely accessible phenotype-centered database with integrated analysis and visualization tools. It combines diverse data sets from multiple species and experiment types, and allows data sharing across collaborative groups or to public users. It was conceived of as a tool for the integration of biological functions based on the molecular processes that subserved them. From these data, an empirically derived ontology may one day be inferred. Users have found the system valuable for a wide range of applications in the arena of functional genomic data integration.
Proper citation: Gene Weaver (RRID:SCR_003009) Copy
http://ww2.sanbi.ac.za/Dbases.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The STACKdb is knowledgebase generated by processing EST and mRNA sequences obtained from GenBank through a pipeline consisting of masking, clustering, alignment and variation analysis steps. The STACK project aims to generate a comprehensive representation of the sequence of each of the expressed genes in the human genome by extensive processing of gene fragments to make accurate alignments, highlight diversity and provide a carefully joined set of consensus sequences for each gene. The STACK project is comprised of the STACKdb human gene index, a database of virtual human transcripts, as well as stackPACK, the tools used to create the database. STACKdb is organized into 15 tissue-based categories and one disease category. STACK is a tool for detection and visualization of expressed transcript variation in the context of developmental and pathological states. The data system organizes and reconstructs human transcripts from available public data in the context of expression state. The expression state of a transcript can include developmental state, pathological association, site of expression and isoform of expressed transcript. STACK consensus transcripts are reconstructed from clusters that capture and reflect the growing evidence of transcript diversity. The comprehensive capture of transcript variants is achieved by the use of a novel clustering approach that is tolerant of sub-sequence diversity and does not rely on pairwise alignment. This is in contrast with other gene indexing projects. STACK is generated at least four times a year and represents the exhaustive processing of all publicly available human EST data extracted from GenBank. This processed information can be explored through 15 tissue-specific categories, a disease-related category and a whole-body index
Proper citation: Sequence Tag Alignment and Consensus Knowledgebase Database (RRID:SCR_002156) Copy
http://www.projects.roslin.ac.uk/sheepmap/front.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The project aims to apply genome mapping research to sheep, utilizing previous research in sheep (in other countries) and in other species (in the UK and abroad) to the benefit of the UK sheep industry. The project itself uses existing breeding structures, knowledge of the sheep genome and experimental resources. It has three main aims: i) To use the Suffolk, Texel and Charollais Sire Referencing Schemes to detect and verify quantitative trait loci (QTLs) for growth and carcass composition traits ii) To investigate candidate genes and/or chromosomal regions for associations with production traits. iii) To investigate approaches for optimizing future genotyping strategies within the sire referencing schemes for practical and cost effective application of marker-assisted selection By using commercial breeding populations for the research, immediate application of beneficial results is possible. Potential benefits include increased genetic progress through marker assisted selection which utilizes the genotype information, correction of possible parentage errors (ultimately leading to additional genetic progress) and opportunities for using marker information for product certification. The project will benefit the UK sheep industry by the use of Marker Assisted Selection (MAS) utilizing QTL or gene variants identified in the project. Additional benefits may arise from parentage verification and correction of errors e.g. misallocation of lamb to ewe. In the longer term, opportunities may exist to use markers for quality control, tracing products to their source. The major advantage of the design of this project is that the results are immediately applicable to the breeding schemes within which the QTLs and/or genes are detected. The time lag in the application of the results that is often seen with experimental populations is minimized. The project requires close involvement with the Sire Reference Schemes, in return for their assistance the results have immediate benefit to animals within these groups.
Proper citation: UK Sheep Genome Mapping Project (RRID:SCR_002272) Copy
Professionally curated repository for genetics, genomics and related data resources for soybean that contains the most current genetic, physical and genomic sequence maps integrated with qualitative and quantitative traits. SoyBase includes annotated Williams 82 genomic sequence and associated data mining tools. The genetic and sequence views of the soybean chromosomes and the extensive data on traits and phenotypes are extensively interlinked. This allows entry to the database using almost any kind of available information, such as genetic map symbols, soybean gene names or phenotypic traits. The repository maintains controlled vocabularies for soybean growth, development, and traits that are linked to more general plant ontologies. Contributions to SoyBase or the Breeder''s Toolbox are welcome.
Proper citation: SoyBase (RRID:SCR_005096) Copy
http://www.patricbrc.org/portal/portal/patric/Home
A Bioinformatics Resource Center bacterial bioinformatics database and analysis resource that provides researchers with an online resource that stores and integrates a variety of data types (e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data) and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. The PATRIC project includes three primary collaborators: the University of Chicago, the University of Manchester, and New City Media. The University of Chicago is providing genome annotations and a PATRIC end-user genome annotation service using their Rapid Annotation using Subsystem Technology (RAST) system. The National Centre for Text Mining (NaCTeM) at the University of Manchester is providing literature-based text mining capability and service. New City Media is providing assistance in website interface development. An FTP server and download tool are available.
Proper citation: Pathosystems Resource Integration Center (RRID:SCR_004154) Copy
http://smd.stanford.edu/cgi-bin/source/sourceSearch
SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool
Proper citation: SOURCE (RRID:SCR_005799) Copy
http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi
Database of all of the publicly available, complete prokaryotic genomes. In addition to having all of the organisms on a single website, common data types across all genomes in the CMR make searches more meaningful, and cross genome analysis highlight differences and similarities between the genomes. CMR offers a wide variety of tools and resources, all of which are available off of our menu bar at the top of each page. Below is an explanation and link for each of these menu options. * Genome Tools: Find organism lists as well as summary information and analyses for selected genomes. * Searches: Search CMR for genes, genomes, sequence regions, and evidence. * Comparative Tools: Compare multiple genomes based on a variety of criteria, including sequence homology and gene attributes. SNP data is also found under this menu. * Lists: Select and download gene, evidence, and genomic element lists. * Downloads: Download gene sequences or attributes for CMR organisms, or go to our FTP site. * Carts: Select genome preferences from our Genome Cart or download your Gene Cart genes. The Omniome is the relational database underlying the CMR and it holds all of the annotation for each of the CMR genomes, including DNA sequences, proteins, RNA genes and many other types of features. Associated with each of these DNA features in the Omniome are the feature coordinates, nucleotide and protein sequences (where appropriate), and the DNA molecule and organism with which the feature is associated. Also available are evidence types associated with annotation such as HMMs, BLAST, InterPro, COG, and Prosite, as well as individual gene attributes. In addition, the database stores identifiers from other centers such as GenBank and SwissProt, as well as manually curated information on each genome or each DNA molecule including website links. Also stored in the Omniome are precomputed homology data, called All vs All searches, used throughout the CMR for comparative analysis.
Proper citation: JCVI CMR (RRID:SCR_005398) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. Database covering a range of plant pathogenic oomycetes, fungi and bacteria primarily those under study at Virginia Bioinformatics Institute. The data comes from different sources and has genomes of 3 oomycetes pathogens: Phytophthora sojae, Phytophthora ramorum and Hyaloperonospora arabidopsidis. The genome sequences (95 MB for P.sojae and 65 MB for P.ramorum) were annotated with approximately 19,000 and approximately 16,000 gene models, respectively. Two different statistical methods were used to validate these gene models, Fickett''''s and a log-likelihood method. Functional annotation of the gene models is based on results from BlastX and InterProScan screens. From the InterProScan results, putative functions to 17,694 genes in P.sojae and 14,700 genes in P.ramorum could be assigned. An easy-to-use genome browser was created to view the genome sequence data, which opens to detailed annotation pages for each gene model. A community annotation interface is available for registered community members to add or edit annotations. There are approximately 1600 gene models for P.sojae and approximately 700 models for P.ramorum that have already been manually curated. A toolkit is provided as an additional resource for users to perform a variety of sequence analysis jobs.
Proper citation: VMD (RRID:SCR_004905) Copy
http://www.plexdb.org/index.php
PLEXdb (Plant Expression Database) is a unified gene expression resource for plants and plant pathogens. PLEXdb is a genotype to phenotype, hypothesis building information warehouse, leveraging highly parallel expression data with seamless portals to related genetic, physical, and pathway data. The integrated tools of PLEXdb allow investigators to use commonalities in plant biology for a comparative approach to functional genomics through use of large-scale expression profiling data sets.
Proper citation: PLEXdb - Plant Expression Database (RRID:SCR_006963) Copy
http://rarediseases.info.nih.gov/GARD/Default.aspx
Genetic and Rare Diseases Information Center (GARD) is a collaborative effort of two agencies of the National Institutes of Health, The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) to help people find useful information about genetic conditions and rare diseases. GARD provides timely access to experienced information specialists who can furnish current and accurate information about genetic and rare diseases. So far, GARD has responded to 27,635 inquiries on about 7,147 rare and genetic diseases. Requests come not only from patients and their families, but also from physicians, nurses and other health-care professionals. GARD also has proved useful to genetic counselors, occupational and physical therapists, social workers, and teachers who work with people with a genetic or rare disease. Even scientists who are studying a genetic or rare disease and who need information for their research have contacted GARD, as have people who are taking part in a clinical study. Community leaders looking to help people find resources for those with genetic or rare diseases and advocacy groups who want up-to-date disease information for their members have contacted GARD. And members of the media who are writing stories about genetic or rare diseases have found the information GARD has on hand useful, accurate and complete. GARD has information on: :- What is known about a genetic or rare disease. :- What research studies are being conducted. :- What genetic testing and genetic services are available. :- Which advocacy groups to contact for a specific genetic or rare disease. :- What has been written recently about a genetic or rare disease in medical journals. GARD information specialists get their information from: :- NIH resources. :- Medical textbooks. :- Journal articles. :- Web sites. :- Advocacy groups, and their literature and services. :- Medical databases.
Proper citation: Genetic and Rare Diseases Information Center (RRID:SCR_008695) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.