Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 10 showing 181 ~ 200 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection

http://ophid.utoronto.ca/navigator/

A software package for visualizing and analyzing protein-protein interaction networks. NAViGaTOR can query OPHID / I2D - online databases of interaction data - and display networks in 2D or 3D. To improve scalability and performance, NAViGaTOR combines Java with OpenGL to provide a 2D/3D visualization system on multiple hardware platforms. NAViGaTOR also provides analytical capabilities and supports standard import and export formats such as GO and the Proteomics Standards Initiative (PSI). NAViGaTOR can be installed and run on Microsoft Windows, Linux / UNIX, and Mac OS systems. NAViGaTOR is written in Java and uses JOGL (Java bindings for OpenGL) to support scalability, highlighting or suppressing of information, and other advanced graphic approaches.

Proper citation: Network Analysis, Visualization and Graphing TORonto (RRID:SCR_008373) Copy   


  • RRID:SCR_014695

    This resource has 10+ mentions.

https://bio.tools

Community registry of software tools and data resources for life sciences. Tools and data services registry as community effort to document bioinformatics resources. Registry of software and databases, facilitating researchers from across spectrum of biological and biomedical science. When adding tools to registry, information including URL, contact information, resource function, field its relevant in, and its primary publication are required. Development is supported by ELIXIR - the European Infrastructure for Biological Information.

Proper citation: bio.tools (RRID:SCR_014695) Copy   


https://rgd.mcw.edu/rgdweb/portal/home.jsp?p=4

An integrated resource for information on genes, QTLs and strains associated with diabetes. The portal provides easy acces to data related to both Type 1 and Type 2 Diabetes and Diabetes-related Obesity and Hypertension, as well as information on Diabetic Complications. View the results for all the included diabetes-related disease states or choose a disease category to get a pull-down list of diseases. A single click on a disease will provide a list of related genes, QTLs, and strains as well as a genome wide view of these via the GViewer tool. A link from GViewer to GBrowse shows the genes and QTLs within their genomic context. Additional pages for Phenotypes, Pathways and Biological Processes provide one-click access to data related to diabetes. Tools, Related Links and Rat Strain Models pages link to additional resources of interest to diabetes researchers.

Proper citation: Diabetes Disease Portal (RRID:SCR_001660) Copy   


  • RRID:SCR_001727

    This resource has 50+ mentions.

http://matrixdb.univ-lyon1.fr/

Freely available database focused on interactions established by extracellular proteins and polysaccharides, taking into account the multimeric nature of the extracellular proteins (e.g. collagens, laminins and thrombospondins are multimers). MatrixDB is an active member of the International Molecular Exchange (IMEx) consortium and has adopted the PSI-MI standards for annotating and exchanging interaction data. It includes interaction data extracted from the literature by manual curation, and offers access to relevant data involving extracellular proteins provided by the IMEx partner databases through the PSICQUIC webservice, as well as data from the Human Protein Reference Database. The database reports mammalian protein-protein and protein-carbohydrate interactions involving extracellular molecules. Interactions with lipids and cations are also reported. MatrixDB is focused on mammalian interactions, but aims to integrate interaction datasets of model organisms when available. MatrixDB provides direct links to databases recapitulating mutations in genes encoding extracellular proteins, to UniGene and to the Human Protein Atlas that shows expression and localization of proteins in a large variety of normal human tissues and cells. MatrixDB allows researchers to perform customized queries and to build tissue- and disease-specific interaction networks that can be visualized and analyzed with Cytoscape or Medusa. Statistics (2013): 2283 extracellular matrix interactions including 2095 protein-protein and 169 protein-glycosaminoglycan interactions.

Proper citation: MatrixDB (RRID:SCR_001727) Copy   


http://datahub.io/dataset/kupkb

A collection of omics datasets (mRNA, proteins and miRNA) that have been extracted from PubMed and other related renal databases, all related to kidney physiology and pathology giving KUP biologists the means to ask queries across many resources in order to aggregate knowledge that is necessary for answering biological questions. Some microarray raw datasets have also been downloaded from the Gene Expression Omnibus and analyzed by the open-source software GeneArmada. The Semantic Web technologies, together with the background knowledge from the domain's ontologies, allows both rapid conversion and integration of this knowledge base. SPARQL endpoint http://sparql.kupkb.org/sparql The KUPKB Network Explorer will help you visualize the relationships among molecules stored in the KUPKB. A simple spreadsheet template is available for users to submit data to the KUPKB. It aims to capture a minimal amount of information about the experiment and the observations made.

Proper citation: Kidney and Urinary Pathway Knowledge Base (RRID:SCR_001746) Copy   


  • RRID:SCR_001881

    This resource has 10000+ mentions.

https://david.ncifcrf.gov/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025. Bioinformatics resource system including web server and web service for functional annotation and enrichment analyses of gene lists. Consists of comprehensive knowledgebase and set of functional analysis tools. Includes gene centered database integrating heterogeneous gene annotation resources to facilitate high throughput gene functional analysis.

Proper citation: DAVID (RRID:SCR_001881) Copy   


  • RRID:SCR_001791

    This resource has 1+ mentions.

http://mousecyc.jax.org/

A manually curated database of both known and predicted metabolic pathways for the laboratory mouse. It has been integrated with genetic and genomic data for the laboratory mouse available from the Mouse Genome Informatics database and with pathway data from other organisms, including human. The database records for 1,060 genes in Mouse Genome Informatics (MGI) are linked directly to 294 pathways with 1,790 compounds and 1,122 enzymatic reactions in MouseCyc. (Aug. 2013) BLAST and other tools are available. The initial focus for the development of MouseCyc is on metabolism and includes such cell level processes as biosynthesis, degradation, energy production, and detoxification. MouseCyc differs from existing pathway databases and software tools because of the extent to which the pathway information in MouseCyc is integrated with the wealth of biological knowledge for the laboratory mouse that is available from the Mouse Genome Informatics (MGI) database.

Proper citation: MouseCyc (RRID:SCR_001791) Copy   


http://ahd.cbi.pku.edu.cn

Database providing a systematic and comprehensive view of morphological phenotypes regulated by plant hormones, as well as regulatory genes participating in numerous plant hormone responses. By integrating the data from mutant studies, transgenic analysis and gene ontology annotation, genes related to the stimulus of eight plant hormones were identified, including abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid and salicylic acid. Another pronounced characteristics of this database is that a phenotype ontology was developed to precisely describe all kinds of morphological processes regulated by plant hormones with standardized vocabularies. To increase the coverage of phytohormone related genes, the database has been updated from AHD to AHD2.0 adding and integrating several pronounced features: (1) added 291 newly published Arabidopsis hormone related genes as well as corrected information (e.g. the arguable ABA receptors) based on the recent 2-year literature; (2) integrated orthologues of sequenced plants in OrthoMCLDB into each gene in the database; (3) integrated predicted miRNA splicing site in each gene in the database; (4) provided genetic relationship of these phytohormone related genes mining from literature, which represents the first effort to construct a relatively comprehensive and complex network of hormone related genes as shown in the home page of our database; (5) In convenience to in-time bioinformatics analysis, they also provided links to a powerful online analysis platform Weblab that they have recently developed, which will allow users to readily perform various sequence analysis with these phytohormone related genes retrieved from AHD2.0; (6) provided links to other protein databases as well as more expression profiling information that would facilitate users for a more systematic analysis related to phytohormone research. Please help to improve the database with your contributions.

Proper citation: Arabidopsis Hormone Database (RRID:SCR_001792) Copy   


  • RRID:SCR_002036

    This resource has 100+ mentions.

http://www.candidagenome.org/

Database of genetic and molecular biological information about Candida albicans. Contains information about genes and proteins, descriptions and classifications of their biological roles, molecular functions, and subcellular localizations, gene, protein, and chromosome sequence information, tools for analysis and comparison of sequences and links to literature information. Each CGD gene or open reading frame has an individual Locus Page. Genetic loci that are not tied to DNA sequence also have Locus Pages. Provides Gene Ontology, GO, to all its users. Three ontologies that comprise GO (Molecular Function, Cellular Component, and Biological Process) are used by multiple databases to annotate gene products, so that this common vocabulary can be used to compare gene products across species. Development of ontologies is ongoing in order to incorporate new information. Data submissions are welcome.

Proper citation: Candida Genome Database (RRID:SCR_002036) Copy   


http://www.megabionet.org/atpid/webfile/

Centralized platform to depict and integrate the information pertaining to protein-protein interaction networks, domain architecture, ortholog information and GO annotation in the Arabidopsis thaliana proteome. The Protein-protein interaction pairs are predicted by integrating several methods with the Naive Baysian Classifier. All other related information curated is manually extracted from published literature and other resources from some expert biologists. You are welcomed to upload your PPI or subcellular localization information or report data errors. Arabidopsis proteins is annotated with information (e.g. functional annotation, subcellular localization, tissue-specific expression, phosphorylation information, SNP phenotype and mutant phenotype, etc.) and interaction qualifications (e.g. transcriptional regulation, complex assembly, functional collaboration, etc.) via further literature text mining and integration of other resources. Meanwhile, the related information is vividly displayed to users through a comprehensive and newly developed display and analytical tools. The system allows the construction of tissue-specific interaction networks with display of canonical pathways.

Proper citation: Arabidopsis thaliana Protein Interactome Database (RRID:SCR_001896) Copy   


http://akt.ucsf.edu/EGAN/

Exploratory Gene Association Networks (EGAN) is a software tool that allows a bench biologist to visualize and interpret the results of high-throughput exploratory assays in an interactive hypergraph of genes, relationships (protein-protein interactions, literature co-occurrence, etc.) and meta-data (annotation, signaling pathways, etc.). EGAN provides comprehensive, automated calculation of meta-data coincidence (over-representation, enrichment) for user- and assay-defined gene lists, and provides direct links to web resources and literature (NCBI Entrez Gene, PubMed, KEGG, Gene Ontology, iHOP, Google, etc.). EGAN functions as a module for exploratory investigation of analysis results from multiple high-throughput assay technologies, including but not limited to: * Transcriptomics via expression microarrays or RNA-Seq * Genomics via SNP GWAS or array CGH * Proteomics via MS/MS peptide identifications * Epigenomics via DNA methylation, ChIP-on-Chip or ChIP-Seq * In-silico analysis of sequences or literature EGAN has been built using Cytoscape libraries for graph visualization and layout, and is comparable to DAVID, GSEA, Ingenuity IPA and Ariadne Pathway Studio. There are pre-collated EGAN networks available for human (Homo sapiens), mouse (Mus musculus), rat (Rattus norvegicus), chicken (Gallus gallus), zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), nematode (Caenorhabditis elegans), mouse-ear cress (Arabidopsis thaliana), rice (Oryza sativa) and brewer's yeast (Saccharomyces cerevisiae). There is now an EGAN module available for GenePattern (human-only). Platform: Windows compatible, Mac OS X compatible, Linux compatible

Proper citation: EGAN: Exploratory Gene Association Networks (RRID:SCR_008856) Copy   


  • RRID:SCR_010226

http://link.springer.com/article/10.1007%2Fs11357-003-0002-y

A database that stores information on the biomolecules which are modulated during aging and by caloric restriction (CR). To enhance its usefulness, data collected from studies of CR''''s anti-oxidative action on gene expression, oxidative stress, and many chronic age-related diseases are included. AgingDB is organized into two sections A) apoptosis and the various mitochondrial biomolecules that play a role in aging; B) nuclear transcription factors known to be_sensitive to oxidative environment. AgingDB features an imagemap of biomolecular signal pathways and visualized information that includes protein-protein interactions of biomolecules. Authorized users can submit a new biomolecule or edit an existing biomolecule to reflect latest developments.

Proper citation: AgingDB (RRID:SCR_010226) Copy   


http://caintegrator-info.nci.nih.gov/rembrandt

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 28,2023. REMBRANDT is a data repository containing diverse types of molecular research and clinical trials data related to brain cancers, including gliomas, along with a wide variety of web-based analysis tools that readily facilitate the understanding of critical correlations among the different data types. REMBRANDT aims to be the access portal for a national molecular, genetic, and clinical database of several thousand primary brain tumors that is fully open and accessible to all investigators (including intramural and extramural researchers), as well as the public at-large. The main focus is to molecularly characterize a large number of adult and pediatric primary brain tumors and to correlate those data with extensive retrospective and prospective clinical data. Specific data types hosted here are gene expression profiles, real time PCR assays, CGH and SNP array information, sequencing data, tissue array results and images, proteomic profiles, and patients'''' response to various treatments. Clinical trials'''' information and protocols are also accessible. The data can be downloaded as raw files containing all the information gathered through the primary experiments or can be mined using the informatics support provided. This comprehensive brain tumor data portal will allow for easy ad hoc querying across multiple domains, thus allowing physician-scientists to make the right decisions during patient treatments., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Repository of molecular brain neoplasia data (RRID:SCR_004704) Copy   


  • RRID:SCR_004869

    This resource has 5000+ mentions.

http://www.pantherdb.org/

System that classifies genes by their functions, using published scientific experimental evidence and evolutionary relationships to predict function even in absence of direct experimental evidence. Orthologs view is curated orthology relationships between genes for human, mouse, rat, fish, worm, and fly., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: PANTHER (RRID:SCR_004869) Copy   


  • RRID:SCR_005770

http://basalganglia.huji.ac.il/links.htm

GOdist is a Matlab program that analyzes Affymetrix microarray expression data implementing Kolmogorov-Smirnov (KS) continuous statistics approach. It also implements the discrete approach using Fisher exact test employing a two-tailed hypergeometric distribution. GOdist enables detection of both kinds of changes within specific GO terms represented on the array in relation to different populations: the global array population, the direct parents of the analyzed GO term and the global parent of it (e.g. biological process, molecular function or cellular component). Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOdist (RRID:SCR_005770) Copy   


  • RRID:SCR_005801

    This resource has 100+ mentions.

http://compbio.charite.de/contao/index.php/ontologizer2.html

The Ontologizer is a Java webstart application for GO term enrichment analysis that provides browsing and graph visualization capabilities. The Ontologizer allows users to analyze data with the standard Fisher exact test and also the parent-child method and topology methods. The tool can be started directly from the web using Java webstart. For graph visualizations, users need to install the GraphViz library. The tool is freely available to all, and source code is available at SourceForge. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Ontologizer (RRID:SCR_005801) Copy   


http://thea.unice.fr/index-en.html

THIS RESOURCE IS NO LONGER IN SERVICE, on documented July 16, 2012. An integrated information processing system dedicated to the analysis of post-genomic data. It allows automatic annotation of data issued from classification systems with selected biological information (including the Gene Ontology). Users can either manually search and browse through these annotations, or automatically generate meaningful generalizations according to statistical criteria (data mining). Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: THEA - Tools for High-throughput Experiments Analysis (RRID:SCR_005802) Copy   


  • RRID:SCR_005676

    This resource has 1+ mentions.

http://cgap.nci.nih.gov/Genes/GOBrowser

With the CGAP GO browser, you can browse through the GO vocabularies, and find human and mouse genes assigned to each term. GO data updated every few months. Platform: Online tool

Proper citation: CGAP GO Browser (RRID:SCR_005676) Copy   


  • RRID:SCR_005830

    This resource has 1+ mentions.

http://pubsearch.stanford.edu/

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. PubSearch is a web-based literature curation tool, allowing curators to search and annotate genes to keywords from articles. It has a simple mySQL database backend and uses a set of Java Servlets and JSPs for querying, modifying, and adding gene, gene-annotation, and literature information. PubSearch can be downloaded from GMOD. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: PubSearch (RRID:SCR_005830) Copy   


  • RRID:SCR_005670

    This resource has 50+ mentions.

http://vortex.cs.wayne.edu/projects.htm#Onto-Express

The typical result of a microarray experiment is a list of tens or hundreds of genes found to be differentially regulated in the condition under study. Independently of the methods used to select these genes, the common task faced by any researcher is to translate these lists of genes into a better understanding of the biological phenomena involved. Currently, this is done through a tedious combination of searches through the literature and a number of public databases. We developed Onto-Express (OE) as a novel tool able to automatically translate such lists of differentially regulated genes into functional profiles characterizing the impact of the condition studied. OE constructs functional profiles (using Gene Ontology terms) for the following categories: biochemical function, biological process, cellular role, cellular component, molecular function and chromosome location. Statistical significance values are calculated for each category. We demonstrated the validity and the utility of this comprehensive global analysis of gene function by analyzing two breast cancer data sets from two separate laboratories. OE was able to identify correctly all biological processes postulated by the original authors, as well as discover novel relevant mechanisms (Draghici et.al, Genomics, 81(2), 2003). Other results obtained with Onto-Express can be found in Khatri et.al., Genomics. 79(2), 2002. Custom level of abstraction of the Gene Ontology. User account required. Platform: Online tool

Proper citation: Onto-Express (RRID:SCR_005670) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X