Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 10 showing 181 ~ 200 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection

http://redfly.ccr.buffalo.edu

Curated collection of known Drosophila transcriptional cis-regulatory modules (CRMs) and transcription factor binding sites (TFBSs). Includes experimentally verified fly regulatory elements along with their DNA sequence, associated genes, and expression patterns they direct. Submission of experimentally verified cis-regulatory elements that are not included in REDfly database are welcome.

Proper citation: REDfly Regulatory Element Database for Drosophilia (RRID:SCR_006790) Copy   


  • RRID:SCR_007147

    This resource has 1+ mentions.

http://www.nervenet.org/main/dictionary.html

A mouse-related portal of genomic databases and tables of mouse brain data. Most files are intended for you to download and use on your own personal computer. Most files are available in generic text format or as FileMaker Pro databases. The server provides data extracted and compiled from: The 2000-2001 Mouse Chromosome Committee Reports, Release 15 of the MIT microsatellite map (Oct 1997), The recombinant inbred strain database of R.W. Elliott (1997) and R. W. Williams (2001), and the Map Manager and text format chromosome maps (Apr 2001). * LXS genotype (Excel file): Updated, revised positions for 330 markers genotyped using a panel of 77 LXS strain. * MIT SNP DATABASE ONLINE: Search and sort the MIT Single Nucleotide Polymorphism (SNP) database ONLINE. These data from the MIT-Whitehead SNP release of December 1999. * INTEGRATED MIT-ROCHE SNP DATABASE in EXCEL and TEXT FORMATS (1-3 MB): Original MIT SNPs merged with the new Roche SNPs. The Excel file has been formatted to illustrate SNP haplotypes and genetic contrasts. Both files are intended for statistical analyses of SNPs and can be used to test a method outlined in a paper by Andrew Grupe, Gary Peltz, and colleagues (Science 291: 1915-1918, 2001). The Excel file includes many useful equations and formatting that will help in navigating through this large database and in testing the in silico mapping method. * Use of inbred strains for the study of individual differences in pain related phenotypes in the mouse: Elissa J. Chesler''s 2002 dissertation, discussing issues relevant to the integration of genomic and phenomic data from standard inbred strains including genetic interactions with laboratory environmental conditions and the use of various in silico inbred strain haplotype based mapping algorithms for QTL analysis. * SNP QTL MAPPER in EXCEL format (572 KB, updated January 2002 by Elissa Chesler): This Excel workbook implements the Grupe et al. mapping method and outputs correlation plots. The main spreadsheet allows you to enter your own strain data and compares them to haplotypes. Be very cautious and skeptical when using this spreadsheet and the technique. Read all of the caveates. This excel version of the method was developed by Elissa Chesler. This updated version (Jan 2002) handles missing data. * MIT SNP Database (tab-delimited text format): This file is suitable for manipulation in statistics and spreadsheet programs (752 KB, Updated June 27, 2001). Data have been formatted in a way that allows rapid acquisition of the new data from the Roche Bioscience SNP database. * MIT SNP Database (FileMaker 5 Version): This is a reformatted version of the MIT Single Nucleotide Polymorphism (SNP) database in FileMaker 5 format. You will need a copy of this application to open the file (Mac and Windows; 992 KB. Updated July 13, 2001 by RW). * Gene Mapping and Map Manager Data Sets: Genetic maps of mouse chromosomes. Now includes a 10th generation advanced intercross consisting of 500 animals genetoyped at 340 markers. Lots of older files on recombinant inbred strains. * The Portable Dictionary of the Mouse Genome, 21,039 loci, 17,912,832 bytes. Includes all 1997-98 Chromosome Committee Reports and MIT Release 15. * FullDict.FMP.sit: The Portable Dictionary of the Mouse Genome. This large FileMaker Pro 3.0/4.0 database has been compressed with StuffIt. The Dictionary of the Mouse Genome contains data from the 1997-98 chromosome committee reports and MIT Whitehead SSLP databases (Release 15). The Dictionary contains information for 21,039 loci. File size = 4846 KB. Updated March 19, 1998. * MIT Microsatellite Database ONLINE: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. ONLINE. Updated July 12, 2001. * MIT Microsatellite Database: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. File size = 3.0 MB. Updated March 19, 1998. * OurPrimersDB: A small database of primers. Download this database if you are using numerous MIT primers to map genes in mice. This database should be used in combination with the MITDB as one part of a relational database. File size = 149 KB. Updated March 19, 1998. * Empty copy (clone) of the Portable Dictionary in FileMaker Pro 3.0 format. Download this file and import individual chromosome text files from the table into the database. File size = 231 KB. Updated March 19, 1998. * Chromosome Text Files from the Dictionary: The table lists data on gene loci for individual chromosomes.

Proper citation: Mouse Genome Databases (RRID:SCR_007147) Copy   


http://ardb.cbcb.umd.edu

The goals of Antibiotic Resistance Genes Database (ARGB) are to provide a centralized compendium of information on antibiotic resistance, to facilitate the consistent annotation of resistance information in newly sequenced organisms, and also to facilitate the identification and characterization of new genes. ARGB contains six types of database groups: - Resistance Type: This database contains information, such as resistance profile, mechanism, requirement, epidemiology for each type. - Resistance Gene: This database contains information, such as resistance profile, resistance type, requirement, protein and DNA sequence for each gene.This database only includes NON-REDUNDANT, NON-VECTOR, COMPLETE genes. - Antibiotic: This database contains information, such as producer, action mechanism, resistance type, for each gene. - Resistance Gene(NonRD): This database contains the same information as Resistance Gene. It does NOT include NON-REDUNDANT, NON-VECTOR genes, but includes INCOMPLETE genes. - Resistance Gene(ALL): This database contains the same information as Resistance Gene. It includes all REDUNDANT, VECTOR AND INCOMPLETE genes. - Resistance Species: This database contains resistance profile and corresponding resistance genes for each species. Furthermore, ARDB also contians three types BLAST database: - Resistance Genes Complete: Contains only NON-REDUNDANT, NON-VECTOR, COMPLETE genes sequences. - Resistance Genes Non-redundant: Contains NON-REDUNDANT, NON-VECTOR, COMPLETE, INCOMPLETE genes sequences. - Resistance Genes All: Contains all REDUNDANT, VECTOR, COMPLETE, INCOMPLETE genes sequences. Lastly, ARDB provides four types of Analytical tools: - Normal BLAST: This function allows an user to input a DNA or protein sequence, and find similar DNA (Nucleotide BLAST) or protein (Protein BLAST) sequences using blastn, blastp, blastx, tblastn, tblastx - RPS BLAST: A web RPSBLAST (RPS BLAST) interface is provided to align a query sequence against the Position Specific Scoring Matrix (PSSM) for each type. Normally, this will give the same annotation information as using regular BLAST mentioned above. - Multiple Sequences BLAST (Genome Annotation): This function allows an user to annotate multiple (less than 5000) query sequences in FASTA format. - Mutation Resistance Identification: This function allows an user to identify mutations that will cause potential antibiotic resistance, for 12 genes (16S rRNA, 23S rRNA, gyrA, gyrB, parC, parE, rpoB, katG, pncA, embB, folP, dfr). ������ :Sponsors: ARDB is funded by Uniformed Services University of the Health Sciences, administered by the Henry Jackson Foundation. :

Proper citation: Antibiotic Resistance Genes Database (RRID:SCR_007040) Copy   


  • RRID:SCR_007079

    This resource has 1+ mentions.

http://www.genoscope.cns.fr/externe/tetraodon/

The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.

Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy   


http://gtrnadb.ucsc.edu

This genomic tRNA database contains tRNA gene predictions made by the program tRNAscan-SE (Lowe & Eddy, Nucl Acids Res 25: 955-964, 1997) on complete or nearly complete genomes. Unless otherwise noted, all annotation is automated, and has not been inspected for agreement with published literature. Transfer RNAs (tRNAs) represent the single largest, best-understood class of non-protein coding RNA genes found in all living organisms. By far, the major source of new tRNAs is computational identification of genes within newly sequenced genomes. To organize the rapidly growing collection and enable systematic analyses, we created the Genomic tRNA Database (GtRNAdb). The web resource provides overview statistics of tRNA genes within each analyzed genome, including information by isotype and genetic locus, easily downloadable primary sequences, graphical secondary structures and multiple sequence alignments. Direct links for each gene to UCSC eukaryotic and microbial genome browsers provide graphical display of tRNA genes in the context of all other local genetic information. The database can be searched by primary sequence similarity, tRNA characteristics or phylogenetic group. Inevitably with automated sequence analysis, we find exceptions to general identification rules, isoacceptor type predictions (esp. due to variable post-transcriptional anticodon modification), and questionable tRNA identifications (due to pseudogenes, SINES, or other tRNA-derived elements). We attempt to document all cases we come across, and welcome feedback on new or unrecognized discrepancies.

Proper citation: GtRNAdb - Genomic tRNA Database (RRID:SCR_006939) Copy   


http://www.chr7.org

Database containing the DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented; the most up to date collation of sequence, gene, and other annotations from all databases (eg. Celera published, NCBI, Ensembl, RIKEN, UCSC) as well as unpublished data. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. The objective of this project is to generate a comprehensive description of human chromosome 7 to facilitate biological discovery, disease gene research and medical genetic applications. There are over 360 disease-associated genes or loci on chromosome 7. A major challenge ahead will be to represent chromosome alterations, variants, and polymorphisms and their related phenotypes (or lack thereof), in an accessible way. In addition to being a primary data source, this site serves as a weighing station for testing community ideas and information to produce highly curated data to be submitted to other databases such as NCBI, Ensembl, and UCSC. Therefore, any useful data submitted will be curated and shown in this database. All Chromosome 7 genomic clones (cosmids, BACs, YACs) listed in GBrowser and in other data tables are freely distributed.

Proper citation: Chromosome 7 Annotation Project (RRID:SCR_007134) Copy   


http://www.cidr.jhmi.edu/

Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.

Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy   


https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page

A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.

Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy   


  • RRID:SCR_007973

    This resource has 100+ mentions.

http://enhancer.lbl.gov/

Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.

Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy   


  • RRID:SCR_008144

http://locus.jouy.inra.fr/cgi-bin/lgbc/mapping/common/intro2.pl?BASE=goat

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. This website contains information about the mapping of the caprine genome. It contains loci list, phenes list, cartography, gene list, and other sequence information about goats. This website contains 731 loci, 271 genes, and 1909 homologue loci on 112 species. It also allows users to summit their own data for Goatmap. ARK-Genomics is not-for-profit and has collaborators from all over the world with an interest in farm animal genomics and genetics. ARK-Genomics was initially set up in 2000 with a grant awarded from the BBSRC IGF (Investigating Gene Function) initiative and from core resources of the Roslin Institute to provide a laboratory for automated analysis of gene expression using state-of-the-art genomic facilities. Since then, ARK-Genomics has expanded considerably, building up considerable expertise and resources.

Proper citation: GoatMap Database (RRID:SCR_008144) Copy   


http://genome.wustl.edu/projects/detail/human-gut-microbiome/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2022. Human Gut Microbiome Initiative (HGMI) seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota. Humans are supra-organisms, composed of 10 times more microbial cells than human cells. Therefore, it seems appropriate to consider ourselves as a composite of many species - human, bacterial, and archaeal - and our genome as an amalgamation of human genes and the genes in ''our'' microbial genomes (''microbiome''). In the same sense, our metabolome can be considered to be a synthesis of co-evolved human and microbial traits. The total number of genes present in the human microbiome likely exceeds the number of our H. sapiens genes by orders of magnitude. Thus, without an understanding of our microbiota and microbiome, it not possible to obtain a complete picture of our genetic diversity and of our normal physiology. Our intestine is home to our largest collections of microbes: bacterial densities in the colon (up to 1 trillion cells/ml of luminal contents) are the highest recorded for any known ecosystem. The vast majority of phylogenetic types in the distal gut microbiota belong to just two divisions (phyla) of the domain Bacteria - the Bacteroidetes and the Firmicutes. Members of eight other divisions have also been identified using culture-independent 16S rRNA gene-based surveys. Metagenomic studies of complex microbial communities residing in our various body habitats are limited by the availability of suitable reference genomes for confident assignment of short sequence reads generated by highly parallel DNA sequencers, and by knowledge of the professions (niches) of community members. Therefore, HGMI, which represents a collaboration between Washington University''s Genome Center and its Center for Genome Sciences, seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota.

Proper citation: Human Gut Microbiome Initiative (RRID:SCR_008137) Copy   


  • RRID:SCR_007907

    This resource has 500+ mentions.

http://vega.sanger.ac.uk/

Central repository for high quality frequently updated manual annotation of vertebrate finished genome sequence. Human, mouse and zebrafish are in the process of being completely annotated, whereas for other species the annotation is only of specific genomic regions of particular biological interest. The majority of the annotation is from the HAVANA group at the Welcome Trust Sanger Institute. Users can BLAST, search for specific text, export, and download data. Genomes and details of the projects for each species are available through the homepages for human mouse and zebrafish. The website is built upon code from the EnsEMBL (http://www.ensembl.org) project. Some Ensembl features are not available in Vega. From the users point of view perhaps the most significant of these is MartView. However due to their inclusion in Ensembl, Vega human and mouse data can be queried using Ensembl MartView. Vega contains annotation of the human MHC region in eight haplotypes, and the LRC region in three haplotypes. Vega also contains annotation on the Insulin Dependent Diabetes (IDD) regions on non-reference assemblies for mouse.

Proper citation: VEGA (RRID:SCR_007907) Copy   


  • RRID:SCR_008033

    This resource has 100+ mentions.

http://www.gene-regulation.com/pub/databases.html

In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.

Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy   


http://www.genomatix.de/

Genomatix is a privately held company that offers software, databases, and services aimed at understanding gene regulation at the molecular level representing a central part of systems biology. Its multilayer integrative approach is a working implementation of systems biology principles. Genomatix combines sequence analysis, functional promoter analysis, proprietary genome annotation, promoter sequence databases, comparative genomics, scientific literature data mining, pathway databases, biological network databases, pathway analysis, network analysis, and expression profiling into working solutions and pipelines. It also enables better understanding of biological mechanisms under different conditions and stimuli in the biological context of your data. Some of Genomatix'' most valuable assets are the strong scientific background and the years of experience in research & discovery as well as in development & application of scientific software. Their firsthand knowledge of all the complexities involved in the in-silico analysis of biological data makes them a first-rate partner for all scientific projects involving the evaluation of gene regulatory mechanisms. The Genomatix team has more than a decade of scientific expertise in the successful application of computer aided analysis of gene regulatory networks, which is reflected by more than 150 peer reviewed scientific publications from Genomatix'' scientists More than 35,000 researchers in industry and academia around the world use this technology. The software available in Genomatix are: - GenomatixSuite: GenomatixSuite is our comprehensive software bundle including ElDorado, Gene2Promoter, GEMS Launcher, MatInspector and MatBase. GenomatixSuite PE also includes BiblioSphere Pathway Edition. Chromatin IP Software - RegionMiner: Fast, extensive analysis of genomic regions. - ChipInspector: Discover the real power of your microarray data. Genome Annotation Software - ElDorado: Extended Genome Annotation. - Gene2Promoter: Retrieve & analyze promoters - GPD: The Genomatix Promoter Database, which is now included with Gene2Promoter. Knowledge Mining Software - BiblioSpere : The next level of pathway/genomics analysis. - LitInspector: Literature and pathway analysis for free. Sequence Analysis Software - GEMS Launcher: Our integrated collection of sequence analysis tools. - MalInspector: Search transcription factor binding sites - MatBase: The transcription factor knowledge base. Other (no registration required) Software - DiAlign: Multiple alignment of DNA/protein sequence. - Genomatix tools: Various small tools for sequence statistics, extraction, formatting, etc.

Proper citation: Genomatix Software: Understanding Gene Regulation (RRID:SCR_008036) Copy   


  • RRID:SCR_007891

    This resource has 1000+ mentions.

http://rfam.xfam.org/

The Rfam database is a collection of RNA families, each represented by multiple sequence alignments, consensus secondary structures and covariance models (CMs). The families in Rfam break down into three broad functional classes: Non-coding RNA genes, structured cis-regulatory elements and self-splicing RNAs. Typically these functional RNAs often have a conserved secondary structure which may be better preserved than the RNA sequence. The CMs used to describe each family are a slightly more complicated relative of the profile hidden Markov models (HMMs) used by Pfam. CMs can simultaneously model RNA sequence and the structure in an elegant and accurate fashion. Rfam is also available via FTP. You can find data in Rfam in various ways... * Analyze your RNA sequence for Rfam matches * View Rfam family annotation and alignments * View Rfam clan details * Query Rfam by keywords * Fetch families or sequences by NCBI taxonomy * Enter any type of accession or ID to jump to the page for a Rfam family, sequence or genome

Proper citation: Rfam (RRID:SCR_007891) Copy   


http://www.osc.riken.jp/english/

Omics Science Center is aiming to develop a comprehensive system called Life Science Accelerator(LSA) for the advancement of omics research. The LSA is a comprehensive system consists of biological resources, human resources, technologies, know-how, and essential administrative ability. Ultimate goal of LSA is to support and accelerate the advancement in life science research. Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.

Proper citation: RIKEN Omics Science Center (RRID:SCR_008241) Copy   


http://www.biodas.org

The Distributed Annotation System (DAS) defines a communication protocol used to exchange annotations on genomic or protein sequences. It is motivated by the idea that such annotations should not be provided by single centralized databases, but should instead be spread over multiple sites. Data distribution, performed by DAS servers, is separated from visualization, which is done by DAS clients. The advantages of this system are that control over the data is retained by data providers, data is freed from the constraints of specific organisations and the normal issues of release cycles, API updates and data duplication are avoided. DAS is a client-server system in which a single client integrates information from multiple servers. It allows a single machine to gather up sequence annotation information from multiple distant web sites, collate the information, and display it to the user in a single view. Little coordination is needed among the various information providers. DAS is heavily used in the genome bioinformatics community. Over the last years we have also seen growing acceptance in the protein sequence and structure communities. A DAS-enabled website or application can aggregate complex and high-volume data from external providers in an efficient manner. For the biologist, this means the ability to plug in the latest data, possibly including a user''s own data. For the application developer, this means protection from data format changes and the ability to add new data with minimal development cost. Here are some examples of DAS-enabled applications or websites for end users: :- Dalliance Experimental Web/Javascript based Genome Viewer :- IGV Integrative Genome Viewer java based browser for many genomes :- Ensembl uses DAS to pull in genomic, gene and protein annotations. It also provides data via DAS. :- Gbrowse is a generic genome browser, and is both a consumer and provider of DAS. :- IGB is a desktop application for viewing genomic data. :- SPICE is an application for projecting protein annotations onto 3D structures. :- Dasty2 is a web-based viewer for protein annotations :- Jalview is a multiple alignment editor. :- PeppeR is a graphical viewer for 3D electron microscopy data. :- DASMI is an integration portal for protein interaction data. :- DASher is a Java-based viewer for protein annotations. :- EpiC presents structure-function summaries for antibody design. :- STRAP is a STRucture-based sequence Alignment Program. Hundreds of DAS servers are currently running worldwide, including those provided by the European Bioinformatics Institute, Ensembl, the Sanger Institute, UCSC, WormBase, FlyBase, TIGR, and UniProt. For a listing of all available DAS sources please visit the DasRegistry. Sponsors: The initial ideas for DAS were developed in conversations with LaDeana Hillier of the Washington University Genome Sequencing Center.

Proper citation: Distributed Annotation System (RRID:SCR_008427) Copy   


http://flj.hinv.jp/

A human full-length cDNA sequence analysis database focused on mRNA varieties caused by variations of transcription start site (TSS) and splicing. Also available is ATGpr, a program for identifying the translational initiation codons in cDNA sequences. Data are derived from several full-length cDNA studies in Japan. Human gene number was estimated to be 20-25 thousand. However, the number of human mRNA varieties was predicted to be about 100 thousand. The varieties are thought to be caused by variations of TSS and splicing. In their previous human cDNA project, about 30 thousand of FLJ human full-length sequenced cDNAs were deposited to DDBJ/GenBank/EMBL, and they obtained about 1.4 million of 5''-end sequences (5''-EST) of FLJ full-length cDNAs from about 100 kinds of cDNA libraries consist of human tissues and cells constructed by oligo-capping method. The majority of the insert cDNA sizes were over 2 kb and the full-length rate of 5''-end was 90. And our FLJ cDNAs were covered about 80 of human genes. About 22 thousand of finished grades of full-length sequenced cDNAs were obtained in this project. The sequence analysis databases is focused on mRNA variations using human genome and cDNA sequences, FLJ full-length sequenced cDNAs, 5-ESTs of FLJ full-length cDNAs and other cDNA sequences described below. After those sequences were mapped onto the human genome sequences, clustering of the cDNA sequences were done based on the mapping results.

Proper citation: FLJ Human cDNA Database (RRID:SCR_008253) Copy   


  • RRID:SCR_008154

    This resource has 1+ mentions.

http://ncv.unl.edu/Angelettilab/HPV/Database.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.

Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy   


http://www.animalgenome.org/pigs/nagrp.html

Database and resources on the pig genome.

Proper citation: U.S. Pig Genome Project (RRID:SCR_008151) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X